Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL:
1đk:x<1
.\(1+3x-1=9x^2\)
\(3x=9x^2\)
x=3x\(^2\)
=>x=0(ktm) hoặc x= \(\frac{1}{3}\left(tm\right)\)
vậy x=\(\frac{1}{3}\)
hc tốt:)
a/ Giải rồi
b/ ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{2x+3}+\sqrt{x+1}=t>0\)
\(\Rightarrow t^2=3x+4+2\sqrt{2x^2+5x+3}\) (1)
Pt trở thành:
\(t=t^2-6\Leftrightarrow t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=3\)
\(\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}=9\)
\(\Leftrightarrow2\sqrt{2x^2+5x+3}=5-3x\left(x\le\frac{5}{3}\right)\)
\(\Leftrightarrow4\left(2x^2+5x+3\right)=\left(5-3x\right)^2\)
\(\Leftrightarrow...\)
e/ ĐKXD: \(x>0\)
\(5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)+4\)
Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=t\ge\sqrt{2}\)
\(\Rightarrow t^2=x+\frac{1}{4x}+1\)
Pt trở thành:
\(5t=2\left(t^2-1\right)+4\)
\(\Leftrightarrow2t^2-5t+2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=\frac{1}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}=2\)
\(\Leftrightarrow2x-4\sqrt{x}+1=0\)
\(\Rightarrow\sqrt{x}=\frac{2\pm\sqrt{2}}{2}\)
\(\Rightarrow x=\frac{3\pm2\sqrt{2}}{2}\)
a,\(1+\sqrt{3x+1}=3x\)(ĐK:\(x>-\frac{1}{3}\))
\(\Leftrightarrow\sqrt{3x+1}=3x-1\)
\(\Leftrightarrow3x+1=9x^2-6x+1\)
\(\Leftrightarrow9x^2-9x=0\)
\(\Leftrightarrow9x\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=1\left(tm\right)\end{cases}}\)
b,\(\sqrt{2+\sqrt{3x-5}}=\sqrt{x+1}\)(ĐK:\(x>-\frac{5}{3}\))
\(\Leftrightarrow2+\sqrt{3x-5}=x+1\)
\(\Leftrightarrow2+3x-5+2.2\sqrt{3x-5}=x+1\)
\(\Leftrightarrow3x-3-x-1=4\sqrt{3x-5}\)
\(\Leftrightarrow2x-4=4\sqrt{3x-5}\)
\(\Leftrightarrow4x^2-16x+16=48x-80\)
\(\Leftrightarrow4x^2-64x-64=0\)
\(\Delta=64^2-4.\left(-64\right)=4352\)
\(\orbr{\begin{cases}x_1=\frac{64-\sqrt{4352}}{8}=8-2\sqrt{17}\left(tm\right)\\x_2=\frac{64+\sqrt{4352}}{8}=8+2\sqrt{17}\left(tm\right)\end{cases}}\)
c,Cho biểu thức trong căn nhận giá trị 16 mà giải
-1; -6
b) ĐK: \(x^2+7x+7\ge0\) (đk xấu quá em ko giải đc;v)
PT \(\Leftrightarrow3x^2+21x+18+2\left(\sqrt{x^2+7x+7}-1\right)=0\)
\(\Leftrightarrow3\left(x+1\right)\left(x+6\right)+2\left(\frac{x^2+7x+6}{\sqrt{x^2+7x+7}+1}\right)=0\)
\(\Leftrightarrow3\left(x+1\right)\left(x+6\right)+\frac{2\left(x+1\right)\left(x+6\right)}{\sqrt{x^2+7x+7}+1}=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)\left[3+\frac{1}{\sqrt{x^2+7x+7}+1}\right]=0\)
Hiển nhiên cái ngoặc vuông > 0 nên vô nghiệm suy ra x = -1 (TM) hoặc x = -6 (TM)
Vậy....
P/s: Cũng may nghiệm đẹp chứ chứ nghiệm xấu thì tiêu rồi:(
a) \(\left\{{}\begin{matrix}x\ge0\\-\sqrt{x+7}< 0\\-5x-4\ne0\\-3x+2\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x+7>0\\-5x\ne4\\-3x\ne-2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x>-7\\x\ne\frac{-4}{5}\\x\ne\frac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne\frac{2}{3}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x\ge0\\x+4\ne0\\x-2\ge0\\-2x-10\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne-4\\x\ge2\\-2x\ne10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ne-5\end{matrix}\right.\Leftrightarrow x\ge2\)
c) \(\left\{{}\begin{matrix}x\ge0\\-x-3\ne0\\2x+3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne-3\\x\ne-\frac{3}{2}\end{matrix}\right.\Leftrightarrow x\ge0\)
d) \(\left\{{}\begin{matrix}2x-7\ge0\\x\ge0\\3x-4\ne0\\x-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{7}{2}\\x\ge0\\x\ne\frac{4}{3}\\x\ne3\end{matrix}\right.\Leftrightarrow x\ge\frac{7}{2}\)
a) \(\text{Đ}K\text{X}\text{Đ}:\frac{3}{2}\le x\le\frac{5}{2}\)
Áp dụng BĐT Bunhiacopxki ta có:
\(VT=\sqrt{2x-3}+\sqrt{5-2x}\le\sqrt{2\left(2x-3+5-2x\right)}=2\)
Dấu '=' xảy ra khi \(\sqrt{2x-3}=\sqrt{5-2x}\Leftrightarrow x=2\)
Lại có: \(VP=3x^2-12x+14=3\left(x-2\right)^2+2\ge2\)
Dấu '=' xảy ra khi x=2
Do đó VT=VP khi x=2
b) ĐK: \(x\ge0\). Ta thấy x=0 k pk là nghiệm của pt, chia 2 vế cho x ta có:
\(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\Leftrightarrow x-2-\sqrt{x}-\frac{2}{\sqrt{x}}+\frac{4}{x}=0\)
\(\Leftrightarrow\left(x+\frac{4}{x}\right)-\left(\sqrt{x}+\frac{2}{\sqrt{x}}\right)-2=0\)
Đặt \(\sqrt{x}+\frac{2}{\sqrt{x}}=t>0\Leftrightarrow t^2=x+4+\frac{4}{x}\Leftrightarrow x+\frac{4}{x}=t^2-4\), thay vào ta có:
\(\left(t^2-4\right)-t-2=0\Leftrightarrow t^2-t-6=0\Leftrightarrow\left(t-3\right)\left(t+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\end{cases}}\)
Đối chiếu ĐK của t
\(\Rightarrow t=3\Leftrightarrow\sqrt{x}+\frac{2}{\sqrt{x}}=3\Leftrightarrow x-3\sqrt{x}+2=0\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=1\end{cases}}\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}5-x\ge0\\x-3\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x\ge-5\\x\ge3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le5\\x\ge3\end{matrix}\right.\Leftrightarrow3\le x\le5\)
Ta có: \(\sqrt{5-x}+\sqrt{x-3}=\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{5-x}+\sqrt{x-3}\right)^2=\left(\sqrt{2}\right)^2\)
\(\Leftrightarrow5-x+2\cdot\sqrt{\left(5-x\right)\cdot\left(x-3\right)}+x-3=2\)
\(\Leftrightarrow2+2\cdot\sqrt{\left(5-x\right)\cdot\left(x-3\right)}=2\)
\(\Leftrightarrow2\cdot\sqrt{\left(5-x\right)\cdot\left(x-3\right)}=0\)
mà \(2\ne0\)
nên \(\sqrt{\left(5-x\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\left(5-x\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5-x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\left(nhận\right)\\x=3\left(nhận\right)\end{matrix}\right.\)
Vậy: S={3;5}
b) ĐKXĐ: \(\left\{{}\begin{matrix}x^2-4\ge0\\x-2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)\left(x+2\right)\ge0\\x-2\ge0\end{matrix}\right.\Leftrightarrow x-2\ge0\)\(\Leftrightarrow x\ge2\)
Ta có: \(\sqrt{x^2-4}=2\sqrt{x-2}\)
\(\Leftrightarrow\sqrt{x-2}\cdot\sqrt{x+2}-2\cdot\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{x-2}\cdot\left(\sqrt{x+2}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\\sqrt{x+2}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\x+2=4\end{matrix}\right.\Leftrightarrow x=2\)
Vậy: S={2}
b) ĐK x >= 5/3
pt <=> \(2+\sqrt{3x-5}=x+1\)
=> \(\sqrt{3x-5}=x-1\)
=> \(3x-5=x^2-2x+1\)
=> \(x^2-5x+6=0\)
=> \(\left(x-2\right)\left(x-3\right)=0\)
=> x= 2 hoặc x = 3
Vậy x = 2 ; 3 là n* của pt