K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2022

*vn:vô nghiệm.

a. \(\left(x^2-2\right)\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2=0\\x^2+x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(vn\right)\end{matrix}\right.\)

\(\Leftrightarrow x=\pm\sqrt{2}\)

-Vậy \(S=\left\{\pm\sqrt{2}\right\}\).

b. \(16x^2-8x+5=0\)

\(\Leftrightarrow16x^2-8x+1+4=0\)

\(\Leftrightarrow\left(4x-1\right)^2+4=0\) (vô lí)

-Vậy S=∅.

c. \(2x^3-x^2-8x+4=0\)

\(\Leftrightarrow x^2\left(2x-1\right)-4\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\pm2\end{matrix}\right.\)

-Vậy \(S=\left\{\dfrac{1}{2};\pm2\right\}\).

d. \(3x^3+6x^2-75x-150=0\)

\(\Leftrightarrow3x^2\left(x+2\right)-75\left(x+2\right)=0\)

\(\Leftrightarrow3\left(x+2\right)\left(x^2-25\right)=0\)

\(\Leftrightarrow3\left(x+2\right)\left(x+5\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\pm5\end{matrix}\right.\)

-Vậy \(S=\left\{-2;\pm5\right\}\)

a: Ta có: \(8x+11-3=5x+x-3\)

\(\Leftrightarrow8x+8=6x-3\)

\(\Leftrightarrow2x=-11\)

hay \(x=-\dfrac{11}{2}\)

b: Ta có: \(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)

\(\Leftrightarrow2x\left(x^3+6x^2+12x+8\right)-8x^2=2\left(x^3-8\right)\)

\(\Leftrightarrow2x^4+12x^3+24x^2+16x-8x^2-2x^3+16=0\)

\(\Leftrightarrow2x^4+10x^3+16x^2+16x+16=0\)

\(\Leftrightarrow2x^4+4x^3+6x^3+12x^2+4x^2+8x+8x+16=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x^3+6x^2+4x+8\right)=0\)

\(\Leftrightarrow x+2=0\)

hay x=-2

c: Ta có: \(\left(x+1\right)\left(2x-3\right)=\left(2x-1\right)\left(x+5\right)\)

\(\Leftrightarrow2x^2-3x+2x-3-2x^2-10x+x+5=0\)

\(\Leftrightarrow-10x+2=0\)

\(\Leftrightarrow-10x=-2\)

hay \(x=\dfrac{1}{5}\)

d: Ta có: \(\dfrac{1}{10}-2\cdot\left(\dfrac{1}{2}t-\dfrac{1}{10}\right)=2\left(t-\dfrac{5}{2}\right)-\dfrac{7}{10}\)

\(\Leftrightarrow\dfrac{1}{10}-t+\dfrac{1}{5}=2t-5-\dfrac{7}{10}\)

\(\Leftrightarrow-t-2t=-\dfrac{57}{10}-\dfrac{3}{10}=-6\)

hay t=2

20 tháng 4 2022

a,\(x\in\left\{5;1,5;\dfrac{-4}{3}\right\}\)

8 tháng 7 2018

1/ \(1+\frac{2}{x-1}+\frac{1}{x+3}=\frac{x^2+2x-7}{x^2+2x-3}\)

ĐKXĐ: \(\hept{\begin{cases}x-1\ne0\\x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)

<=> \(1+\frac{2\left(x+3\right)+x-1}{\left(x-1\right)\left(x+3\right)}=\frac{x^2+2x-3-5}{x^2+2x-3}\)

<=> \(1+\frac{2x+6+x-1}{x^2+2x-3}=1-\frac{5}{x^2+2x-3}\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=1-1\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=0\)

<=> \(\frac{3x+10}{x^2+2x-3}=0\)

<=> \(3x+10=0\)

<=> \(x=-\frac{10}{3}\)

a:Sửa đề: \(\dfrac{3}{5x-1}+\dfrac{2}{3-x}=\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)

=>3x-9-10x+2=-4

=>-7x-7=-4

=>-7x=3

=>x=-3/7

b: =>\(\dfrac{5-x}{4x\left(x-2\right)}+\dfrac{7}{8x}=\dfrac{x-1}{2x\left(x-2\right)}+\dfrac{1}{8\left(x-2\right)}\)

=>\(2\left(5-x\right)+7\left(x-2\right)=4\left(x-1\right)+x\)

=>10-2x+7x-14=4x-4+x

=>5x-4=5x-4

=>0x=0(luôn đúng)

Vậy: S=R\{0;2}

9 tháng 5 2021

\(\dfrac{x}{2x-6}-\dfrac{x}{2x+2}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\left(ĐKXĐ:x\ne-1,x\ne3\right)\)

\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}-\dfrac{x}{2\left(x+1\right)}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)

\(\Leftrightarrow\dfrac{x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}-\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{2x\cdot2}{2\left(x+1\right)\left(x-3\right)}\)

\(\Rightarrow x\left(x+1\right)-x\left(x-3\right)=4x\)

\(\Leftrightarrow x^2+x-x^2+3x=4x\)

\(\Leftrightarrow x^2+x-x^2+3x-4x=0\)

\(\Leftrightarrow0x=0\)

Phương trình có vô số nghiệm , trừ x = -1,x = 3

Vậy ...

\(\dfrac{12x+1}{12}< \dfrac{9x+1}{3}-\dfrac{8x+1}{4}\)

\(\Leftrightarrow12\cdot\dfrac{12x+1}{12}< 12\cdot\dfrac{9x+1}{3}-12\cdot\dfrac{8x+1}{4}\)

\(\Leftrightarrow12x+1< 4\left(9x+1\right)-3\left(8x+1\right)\)

\(\Leftrightarrow12x+1< 36x+4-24x-3\)

\(\Leftrightarrow12x+1< 12x+1\)

\(\Leftrightarrow12x-12x< 1-1\)

\(\Leftrightarrow0x< 0\)

Vậy S = {x | x \(\in R\)}

 

19 tháng 3 2021

Trả lời:

\(\frac{x-1}{2x^2-4x}-\frac{7}{8x}=\frac{5-x}{4x^2-8x}-\frac{1}{8x-16}\)\(\left(đkxđ:x\ne0;x\ne2\right)\)

\(\Leftrightarrow\frac{x-1}{2x\left(x-2\right)}-\frac{7}{8x}=\frac{5-x}{4x\left(x-2\right)}-\frac{1}{8\left(x-2\right)}\)

\(\Leftrightarrow\frac{4\left(x-1\right)}{8x\left(x-2\right)}-\frac{7\left(x-2\right)}{8x\left(x-2\right)}=\frac{2\left(5-x\right)}{8x\left(x-2\right)}-\frac{x}{8x\left(x-2\right)}\)

\(\Rightarrow4\left(x-1\right)-7\left(x-2\right)=2\left(5-x\right)-x\)

\(\Leftrightarrow4x-4-7x+14=10-2x-x\)

\(\Leftrightarrow10-3x=10-3x\)

\(\Leftrightarrow-3x+3x=10-10\)

\(\Leftrightarrow0x=0\)( luôn thỏa mãn )

Vậy S = R với \(x\ne0;x\ne2\)

28 tháng 1 2022

\(1,\) thiếu đề

\(2,\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)

\(\Leftrightarrow\dfrac{5\left(5x+2\right)}{30}-\dfrac{10\left(8x-1\right)}{30}=\dfrac{6\left(4x+2\right)}{30}-\dfrac{150}{30}\)

\(\Leftrightarrow5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-150\)

\(\Leftrightarrow25x+10-80x+10=24x+12-150\)

\(\Leftrightarrow-55x+20=24x-138\)

\(\Leftrightarrow24x-138+55x-20=0\)

\(\Leftrightarrow79x-158=0\)

\(\Leftrightarrow x=2\)

\(3,ĐKXĐ:\left\{{}\begin{matrix}x\ne1\\x\ne-1\\x\ne3\end{matrix}\right.\\ \dfrac{x}{2x-6}+\dfrac{x}{2x-2}=\dfrac{-2x}{\left(x+1\right)\left(3-x\right)}\)

\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x-1\right)}+\dfrac{2x}{\left(x+1\right)\left(3-x\right)}=0\)

\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x-1\right)}-\dfrac{2x}{\left(x+1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow x\left(\dfrac{1}{2\left(x-3\right)}+\dfrac{1}{2\left(x-1\right)}-\dfrac{2}{\left(x+1\right)\left(x-3\right)}\right)=0\)

\(\Leftrightarrow x\left(\dfrac{\left(x-1\right)\left(x+1\right)}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}+\dfrac{\left(x-3\right)\left(x+1\right)}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}-\dfrac{4\left(x-1\right)}{2\left(x+1\right)\left(x-3\right)\left(x-1\right)}\right)=0\)

\(\Leftrightarrow x\left(\dfrac{x^2-1}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}+\dfrac{x^2-2x-3}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}-\dfrac{4x-4}{2\left(x+1\right)\left(x-3\right)\left(x-1\right)}\right)=0\)

\(\Leftrightarrow x.\dfrac{x^2-1+x^2-2x-3-4x+4}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}=0\)

\(\Leftrightarrow x.\dfrac{2x^2-6x}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}=0\)

 

 

\(\Leftrightarrow x.\dfrac{2x\left(x-3\right)}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}=0\)

\(\Leftrightarrow x.\dfrac{x}{\left(x-1\right)\left(x+1\right)}=0\)

\(\Leftrightarrow\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}=0\)

\(\Leftrightarrow x=0\)

3 tháng 2 2019

\(2x^3+7x^2+7x+2=0\)

\(\Leftrightarrow\left(2x^3+4x^2\right)+\left(3x^2+6x\right)+\left(x+2\right)=0\)

\(\Leftrightarrow2x^2\left(x+2\right)+3x\left(x+2\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x^2+3x+1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[2x\left(x+1\right)+\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+1\right)\left(2x+1\right)=0\)

.......................................................................................

\(x^3-8x^2-8x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)-8x\left(x+1\right)=0\)

......................................................................................

11 tháng 2 2019

cảm ơn nha