Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)\(\frac{1}{x-1}\)-\(\frac{3x2}{x3-1}\)=\(\frac{2x}{x2+x+1}\)
<=> \(\frac{1}{x-1}\)-\(\frac{3x2}{\left(x-1\right)\left(x2+x+1\right)}\)=\(\frac{2x}{x2+x+1}\) ĐKXĐ: x khác 1
<=> x2+x+1 - 3x2 = 2x(x-1)
<=>x2+x+1 - 3x2 = 2x2-2x
<=>x2-3x-1=0( đoạn này làm nhanh nhé)
<=>x2-2*\(\frac{3}{2}\)x +\(\frac{9}{4}\)-\(\frac{9}{4}\)-1=0
<=>(x-\(\frac{3}{2}\))2-\(\frac{13}{4}\)=0
<=>(x-\(\frac{3-\sqrt{13}}{2}\))(x-\(\frac{3+\sqrt{13}}{2}\))=0
\(\begin{cases}x=\frac{3+\sqrt{13}}{2}\\x=\frac{3-\sqrt{13}}{2}\end{cases}\)
b) pt... đkxđ x khác 1;2;3
<=> 3(x-3) +2(x-2)=x-1
<=> 3x-9 +2x-4 = x-1
<=> 4x= 12
<=> x=3 ( ko thỏa đk)
vậy pt vô nghiệm

\(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
\(=>x^2+x+1-3x^2=2x\left(x-1\right)\)
\(=>-2x^2+x+1=2x^2-2x\)
\(=>-4x^2+3x+1=0\)
\(=>\left(x-1\right)\left(x+\frac{1}{4}\right)=0\)'
\(=>\orbr{\begin{cases}x-1=0\\x+\frac{1}{4}\end{cases}=>\orbr{\begin{cases}x=1\\x=-\frac{1}{4}\end{cases}}}\)

a) \(\frac{5-x}{4x^2-8x}\) + \(\frac{7}{8x}\) = \(\frac{x-1}{2x\left(x-2\right)}\) +\(\frac{1}{8x-16}\) ĐKXĐ : x #0, x#2, x#-2
<=> \(\frac{5-x}{4x\left(x-2\right)}\) + \(\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}\) + \(\frac{1}{8\left(x-2\right)}\)
<=> \(\frac{2\left(5-x\right)}{8x\left(x-2\right)}+\frac{7\left(x-2\right)}{8x\left(x-2\right)}=\frac{4\left(x-1\right)}{8x\left(x-2\right)}+\frac{x}{8x\left(x-2\right)}\)
=> 10 - 2x + 7x - 14 = 4x - 4 + x
<=>-2x + 7x - 4x + x = -4 - 10 + 14
<=>x=-14

ĐKXĐ: \(x\ne0;x\ne1;x\ne3\)
Ta có: \(\frac{1}{x\left(x-1\right)}+\frac{2}{\left(x-1\right)\left(x-3\right)}=\frac{1}{x-3}+2\)
Qui đồng rồi khử mẫu ta được:
\(x-3+2x=x\left(x-1\right)+2x\left(x-1\right)\left(x-3\right)\)
\(\Leftrightarrow x-3+2x=x^2-x+2x^3-8x^2+6x\)
\(\Leftrightarrow-2x^3-x^2+8x^2+x+x-6x=3\)
\(\Leftrightarrow-2x^3+2x^2-4x=3\)
giải phương trình tiếp là ra
x khác 0.
\(\frac{3\left(x^3+1\right)}{x^2}=\frac{7\left(x+1\right)}{x}\)(quy đồng)
<=> 3(x3+1) = 7(x+1)x
<=> 3x3 - 7x2 - 7x + 3 = 0
<=> 3x^3 - 9x^2 + 2x^2 - 6x - x + 3 =0
<=> (x-3)(3x^2 + 2x - 1) = 0
<=> (x-3)(3x^2 + 3x - x - 1) = 0
<=> (x-3)(x+1)(3x-1) = 0
=> x = 3 hoặc x = -1 hoặc x = 1/3 (thỏa mãn).
Vậy S = {3;-1;1/3}
3x + 3/x^2 = 7+7/x
3x + 3/x^2 -7 -7/x = 0
3x^3/x^2 + 3/x^2 -7x^2/x^2 -7x/x^2 = 0
ĐKXĐ : x khác 0
SUy ra 3x^3+ 3-7x^2-7x =0
3x^3-9x^2+2x^2-6x-x+3=0
(x-3)(3x^2+2x-1)=0
(x-3)(3x^2+3x-x-1)=0
(x-3)(x+1)(3x-1)=0
Vậy x =3 hay x=-1 hay x =1/3