Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x(3x-6)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)(tm)
Vậy phương trình có tập nghiệm S=\(\left\{0;2\right\}\)
Ta có: \(2x\left(3x-6\right)=0\)
mà 2>0
nên x(3x-6)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\3x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{0;2\right\}\)
\(\Leftrightarrow2x^2+10x-x^2+6x-9=x^2+6\)
=>16x-9=6
=>16x=15
hay x=15/16
\(PT\Leftrightarrow2x^2+10x-x^2+6x-9-x^2-6=0.\)
\(\Leftrightarrow16x-15=0.\\ \Leftrightarrow x=\dfrac{15}{16}.\)
`2x+3=|3x-2|(x>=-2/3)`
`<=>` $\left[ \begin{array}{l}2x+3=3x-2\\2x+3=2-3x\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=5(tm)\\5x=-1\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=5\\x=-\dfrac15(tm)\end{array} \right.$
Vậy `S={5,-1/5}`
`|2x+2|=|3x-2|`
`<=>` $\left[ \begin{array}{l}2x+2=3x-1\\2x+2=2-3x\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=3\\5x=0\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=3\\x=0\end{array} \right.$
Vậy `S={0,3}`
\(4x-\dfrac{2}{3}=0\\ \Leftrightarrow4x=\dfrac{2}{3}\\ \Leftrightarrow x=\dfrac{\dfrac{2}{3}}{4}=\dfrac{2}{12}=\dfrac{1}{6}\\ \Rightarrow S=\left\{\dfrac{1}{6}\right\}\\ 3-\dfrac{3}{5}x=0\\ \Leftrightarrow\dfrac{3}{5}x=3\\ \Leftrightarrow x=\dfrac{3}{\dfrac{3}{5}}=5\\ \Rightarrow S=\left\{5\right\}\\ 2x+3=5\\ \Leftrightarrow2x=5-3=2\\ \Leftrightarrow x=\dfrac{2}{2}=1\\ \Rightarrow S=\left\{1\right\}\)
a, 4x = 2/3 <=> x = 1/6
b, 3/5x = 3 <=> x = 5
c, 2x = 2 <=> x = 1
\(a,\left(3x-4\right)\left(2x+1\right)\left(5x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-4=0\\2x+1=0\\5x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{4}{3}\\x=-\frac{1}{2}\\x=\frac{2}{5}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{4}{3};\frac{-1}{2};\frac{2}{5}\right\}\).
\(b,x\left(5x-3\right)-5x+3=0\)
\(\Leftrightarrow\left(5x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-3=0\\x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{5}\\x=1\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{3}{5};1\right\}\).
1. giải phương trình
a, (3x-4) (2x+1) (5x-2)=0
➜\(\left[{}\begin{matrix}3x-4=0\\2x+1=0\\5x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{4}{3}\\x=\frac{-1}{2}\\x=\frac{2}{5}\end{matrix}\right.\)
b, x(5x-3) -5x+3=0
➞ \(x\left(5x-3\right)-\left(5x-3\right)=0\)
➜\(\left(x-1\right)\left(5x-3\right)=0\)
➜\(\left[{}\begin{matrix}x-1=0\\5x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{3}{5}\end{matrix}\right.\)
b) 5x(x-2000)-x+2000=0
\(\Rightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\\ \Rightarrow\left(x-2000\right)\left(5x-1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-2000=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0+2000\\5x=0+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\5x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\x=\dfrac{1}{5}\end{matrix}\right.\)
Ta có : 2x4 - 5x3 + 4x2 -5x +2 =0
<=> ( 2x4 +4x2 +2) - ( 5x3 + 5x)=0
<=> 2( x4+2x2+1) - 5x( x2 +1) =0
<=> 2 ( x2+1)2 - 5x( x2+1) =0
<=> (x2 +1) ( 2( x2 +1) -5x ) =0
<=> 2( x2 +1) -5x =0 ( vì x2 >_ 0 => x2 +1 >0)
<=>2x2 +2 -5x =0
<=> 2x2 +2 -4x-x =0
<=> (2x2 -4x) +( 2-x) =0
<=> 2x(x-2) -( x-2) =0
<=> (x-2) (2x-1) = 0
<=> x-2 =0 <=> x= 2 hoặc 2x-1 =0 <=> x= 1/2
vậy x= 2 hoặc x= 1/2
- học tốt -
Ta có: \(2x^2+5x+3=0\)
\(\Leftrightarrow\left(2x^2+2x\right)+\left(3x+3\right)=0\)
\(\Leftrightarrow2x\left(x+1\right)+3\left(x+3\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=-1\end{cases}}\)
\(2x^2+5x+3=0\)
\(\Leftrightarrow2x^2+2x+3x+3=0\)
\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x+1\right)=0\Leftrightarrow x=-\frac{3}{2}orx=-1\)
Vậy nghiệm của phương trình là x = -3/2 ; -1