Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Casio fx 570Vn PLUS lấy ra mà tình nghiệm
Có 1 nghiện là 0,5 tự tìm tiếp
\(\left(3x+2\right)\left(x-5\right)=\left(2x-5\right)\left(3x+2\right)\)
\(\Leftrightarrow\)\(\left(3x+2\right)\left(x-5\right)-\left(2x-5\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\)\(\left(3x+2\right)\left(x-5-2x+5\right)=0\)
\(\Leftrightarrow\)\(-x\left(3x+2\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\3x+2=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=-\frac{2}{3}\end{cases}}\)
Vậy...
\(\left(2x-1\right)^2+\left(2-x\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\)\(\left(2x-1\right)\left(2x-1+2-x\right)=0\)
\(\Leftrightarrow\)\(\left(2x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-1=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{1}{2}\\x=-1\end{cases}}\)
Vậy...
(3x+2)(x-5) = (2x-5)(3x+2)\(\Rightarrow\)x-5 = 2x-5 \(\Rightarrow\)3x = 0 \(\Rightarrow\)x = 0
(2x-1)2 + (2-x)(2x-1) = 0 \(\Rightarrow\)( 2x - 1 )( 2x - 1 + 2 - x ) \(\Rightarrow\)( 2x - 1 )( x + 1 ) = 0
\(\Rightarrow\)\(\orbr{\begin{cases}2x-1=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=1\\x=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{1}{2}\\x=-1\end{cases}}}\)
pt <=>(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^1+x)+(x+1) =0
<=> (x+1).(x^4+x^3+2x^2+x+1)=0
<=>(x+1).[(x^4+x^3+x^2)+(x^2+x+1)] =0
<=>(x+1).(x^2+x+1).(x^2+1)=0
<=> x+1 = 0 ( vì x^2+x+1 và x^2+1 đều > 0)
<=> x= -1
Vậy pt có tập nghiệm x=-1
\(4x^2-4x-5\left|2x-1\right|-5=0\)
\(\Leftrightarrow-5\left|2x-1\right|=5-4x^2+4x\)
\(\Leftrightarrow\left|2x-1\right|=\frac{-4x^2+4x+5}{-5}\)
\(\Leftrightarrow\left|2x-1\right|=\frac{4x\left(x-1\right)}{5}-1\)
TH1 : \(2x-1=\frac{4x\left(x-1\right)}{5}-1\Leftrightarrow2x=\frac{4x\left(x-1\right)}{5}\)
\(\Leftrightarrow10x=4x^2-4x\Leftrightarrow14x-4x^2=0\)
\(\Leftrightarrow-2x\left(2x-7\right)=0\Leftrightarrow x=0;x=\frac{7}{2}\)
TH2 : \(2x-1=-\left(\frac{4x\left(x-1\right)}{5}-1\right)\Leftrightarrow2x-1=-\frac{4x\left(x-2\right)}{5}+1\)
\(\Leftrightarrow2x-2=-\frac{4x\left(x-2\right)}{5}\Leftrightarrow10x-10=-4x^2+8x\)
\(\Leftrightarrow2x-10+4x^2=0\Leftrightarrow2\left(2x^2+x-5\ne0\right)=0\)tự chứng minh
Vậy tập nghiệm của phương trình là S = { 0 ; 7/2 }
a/ 4x + 20 = 0
⇔4x = -20
⇔x = -5
Vậy phương trình có tập nghiệm S = {-5}
b/ 2x – 3 = 3(x – 1) + x + 2
⇔ 2x-3 = 3x -3+x+2
⇔2x – 3x = -3+2+3
⇔-2x = 2
⇔x = -1
Vậy phương trình có tập nghiệm S = {-1}
câu tiếp theo
a/ (3x – 2)(4x + 5) = 0
3x – 2 = 0 hoặc 4x + 5 = 0
- 3x – 2 = 0 => x = 3/2
- 4x + 5 = 0 => x = – 5/4
Vậy phương trình có tập nghiệm S= {-5/4,3/2}
b/ 2x(x – 3) – 5(x – 3) = 0
=> (x – 3)(2x -5) = 0
=> x – 3 = 0 hoặc 2x – 5 = 0
* x – 3 = 0 => x = 3
* 2x – 5 = 0 => x = 5/2
Vậy phương trình có tập nghiệm S = {0, 5/2}
1
a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9
(9+x)= -9-x khi 9+x <0 hoặc x <-9
1)pt 9+x=2 với x >_ -9
<=> x = 2-9
<=> x=-7 thỏa mãn điều kiện (TMDK)
2) pt -9-x=2 với x<-9
<=> -x=2+9
<=> -x=11
x= -11 TMDK
vậy pt có tập nghiệm S={-7;-9}
các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd
nhu cau o trên mk lam 9+x>_0 hoặc x>_0
với số âm thi -2x>_0 hoặc x <_ 0 nha
a) \(x^3-3x^2+4=0\)
\(\Leftrightarrow\left(x-2\right)^2.\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
b) \(\left(2x^2-3x-1\right)^2-3\left(2x^2-3x-5\right)-16=0\)
\(\Leftrightarrow4x^4-12x^3+7x^2+3x=0\)
\(\Leftrightarrow x\left(2x-3\right)\left(2x^2-3x-1\right)=0\)
\(\Leftrightarrow2x-3=0\)
\(\Leftrightarrow2x=0+3\)
\(\Leftrightarrow2x=3\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
a) \(x^3-3x^2+4=0\)
\(\Leftrightarrow\)\(x^3+x^2-4x^2-4x+4x+4=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
Vậy....
`3x+7=0`
`<=>3x=-7`
`<=>x=-7/3`
Vậy `S={-7/3}`
______________________
`2x(x-2)+2x(5-3x)=0`
`<=>2x(x-2+5-3x)=0`
`<=>2x(3-2x)=0`
`@TH1:2x=0<=>x=0`
`@TH2: 3-2x=0<=>2x=3<=>x=3/2`
Vậy `S={0;3/2}`
3x+7=0
\(\Leftrightarrow3x=-7\Leftrightarrow x=-\dfrac{7}{3}\)
2x(x-2)+2x(5-3x)=0
\(\Leftrightarrow2x\left(x-2+5-3x\right)=0\)
\(\Leftrightarrow2x\left(-2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\-2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-3}{-2}=\dfrac{3}{2}\end{matrix}\right.\)
Ta có 2x2+3x -5 =0
<=> 2x2-2x+5x-5=0
<=> 2x(x-1)+5(x-1)=0
<=> (x-1)(2x+5)=0
=>\(\orbr{\begin{cases}x-1=0\\2x+5=0\end{cases}\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}}\)
Vậy S={ 1; \(\frac{-5}{2}\)}
2x2 + 3x - 5 = 0
<=> 2x2 - 2x + 5x - 5 = 0
<=> (2x2 - 2x) + (5x - 5) = 0
<=> 2x(x-1) + 5(x-1) = 0
<=> (x-1)(2x+5) = 0
<=> x - 1 = 0 hoặc 2x + 5 = 0
<=> x = 1 hoặc x = -5/2