Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ( 8x + 5 )( 4x + 3 )( 2x + 1 ) = 9
<=> ( 8x + 5 )[ 2( 4x+3)] [ 4 ( 2x+1 )] = 9* 2 * 4
<=> (8x+5)(8x+6)(8x+4) = 72
Đặt 8x+5 = y ta có phương trình tương đương :
y ( y -1 ) ( y+1) = 72
......................
b, Tương tự phần a nhé
c, x^3 + 5x^2 + 5x + 2=0
<=> x^3 + 1 + 5x^2 + 5x + 1 = 0
<=> (x+1)(x^2 - x +1) + 5x ( x+1 ) + 1 =0
<=> (x+1 ) ( x^2+4x + 1) + 1 = 0
a) (5x - 1)(2x + 1) = (5x -1)(x + 3)
<=> (5x - 1)(2x + 1) - (5x -1)(x + 3) = 0
<=> (5x - 1)(2x + 1 - x - 3) = 0
<=> (5x - 1)(x - 2) = 0
<=> \(\orbr{\begin{cases}5x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0,2\\x=2\end{cases}}\)
Vậy x = 0,2 ; x = 2 là nghiệm phương trình
b) x3 - 5x2 - 3x + 15 = 0
<=> x2(x - 5) - 3(x - 5) = 0
<=> (x2 - 3)(x - 5) = 0
<=> \(\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\left(x-5\right)=0\)
<=> \(x-\sqrt{3}=0\text{ hoặc }x+\sqrt{3}=0\text{ hoặc }x-5=0\)
<=> \(x=\sqrt{3}\text{hoặc }x=-\sqrt{3}\text{hoặc }x=5\)
Vậy \(x\in\left\{\sqrt{3};\sqrt{-3};5\right\}\)là giá trị cần tìm
c) (x - 3)2 - (5 - 2x)2 = 0
<=> (x - 3 + 5 - 2x)(x - 3 - 5 + 2x) = 0
<=> (-x + 2)(3x - 8) = 0
<=> \(\orbr{\begin{cases}-x+2=0\\3x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{8}{3}\end{cases}}\)
Vậy tập nghiệm phương trình \(S=\left\{2;\frac{8}{3}\right\}\)
d) x3 + 4x2 + 4x = 0
<=> x(x2 + 4x + 4) = 0
<=> x(x + 2)2 = 0
<=> \(\orbr{\begin{cases}x=0\\\left(x+2\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
Vậy tập nghiệm phương trình S = \(\left\{0;-2\right\}\)
\(\text{a) (5x+2)(x-7)=0}\)
\(\Leftrightarrow\orbr{\begin{cases}5x+2=0\\x-7=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{5}\\x=7\end{cases}}\)
Vậy ...
#Thảo Vy#
\(2x^3-x^2+5x+3=0\)
\(\Leftrightarrow2x^3+x^2-2x^2-x+6x+3=0\)
\(\Leftrightarrow x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x^2-x+3\right)=0\)
\(\Leftrightarrow2x+1=0\) (do \(x^2-x+3>0,\forall x\))
\(\Leftrightarrow x=-\frac{1}{2}\).
Đặt x làm nhân tử chung,ta có phương trình tương đương
x(2x^2+5x-3)=0<=>x=0 hoặc 2x^2+5x-3=0
*2x^2+5x-3=0<=>2x^2-x+6x-3=0
<=>x(2x-1)+3(2x-1)=0<=>(x+3)(2x-1)=0
Giải ra <=>x=3 hoặc x=1/2
Vậy pt đã cho có nghiệm x=0 hoăcx=3 hoặc x=1/2
a) \(x-\left(5x+3\right)=2x-4\)
\(\Leftrightarrow x-5x-3=2x-4\)
\(\Leftrightarrow x-5x-2x=-4+3\)
\(\Leftrightarrow-6x=-1\)
\(\Leftrightarrow x=\frac{1}{6}\)
b) \(2x^3-18x=0\)
\(\Leftrightarrow2x\left(x^2-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x^2-9=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm3\end{cases}}\)
c)\(\left(x-3\right)^2=\left(2x+7\right)^2\)
\(\Leftrightarrow x-3=2x+7\)
\(\Leftrightarrow x-2x=7+3\)
\(\Leftrightarrow-x=10\)
\(\Leftrightarrow x=-10\)
Anh giải câu a thôi. Câu b hoàn toàn tương tự.
\(\left(x-1\right)\left(5x+3\right)-\left(x-1\right)\left(3x-8\right)=0\)
\(\left(x-1\right)\left(2x+11\right)=0\)
Ok mình sẽ giúp bạn!!
(2x2+1)3 + (2-5x)3 = (2x2-5x+3)3
<=> (2x2+1)3 +(2-5x)3 - (2x2-5x+3)3 =0
<=> (2x2+1)3+(2-5x)3+(-2x2+5x-3)3 =0 ( Chỉ có mũ lẽ thì mới đổi dấu được nhé ) (5)
Đặt a=2x2+1 ; b=2-5x ; c=-2x2+5x-3 (4)
=> a+b+c=2x2+1+2-5x-2x2+5x-3=0 => a+b=-c ; b+c=-a ; a+c=-b (2)
Ta có
a+b+c =0
<=>(a+b+c)3=0
<=> (a+b)3 +3(a+b)2 +3(a+b)c2+c3=0
<=>a3+b3+3ab(a+b) +3(a+b)2c+3(a+b)c2+c3=0
<=>a3+b3+c3 +3(a+b)[ab+(a+b)c +c2]=0
<=>a3+b3+c3 + 3(a+b)(ab+ac+bc+c2) =0
<=>a3+b3+c3 +3(a+b)[a(b+c)+c(b+c)]=0
<=>a3+b3+c3 +3(a+b)(b+c)(a+c) =0 (1)
Thay (2) vào (1) ta có:
a3+b3+c3+ 3(-c)(-a)(-b) =0
<=> a3+b3+c3-3abc=0
<=> a3+b3+c3=3abc (3)
Thay(4) vào (3) => (2x2+1)3+(2-5x)3+(-2x2+5x-3)3 = 3(2x2+1)(2-5x)(-2x2+5x-3) (6)
Từ (5)và(6) ta có
3(2x2+1)(2-5x)(-2x2+5x-3)=0
<=> (2x2+1)(2-5x)(-2x2+2x+3x-3)=0
<=>(2x2+1)(2-5x)[-2x(x-1)+3(x-1)]=0
<=>(2x2+1)(2-5x)(3-2x)(x-1)=0
Mà 2x2+1 >0 với mọi x thuộc R
=> 2-5x=0 <=> x=2/5
hoặc 3-2x=0 <=> x=3/2
hoặc x-1=0 <=> x=1
Vậy .....
mk nhé!!
Bạn ơi!! Bạn xem lại đề bài xem ở kia là (2x2-1)3 hay là (2x2+1)3