\(\sqrt{6x^2-12x+7}\)=0

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Điều kiện xác định của pt : 6x212x+70 => Với mọi số thực thì pt xác định

Ta có : 2xx2+6x212x+7=0

(6x212x+7)+66x212x+7+7=0

Đặt t=6x212x+7,t0  pt trở thành : t2+6t+7=0 

Với t=7t=7 ta có pt : 6x212x+7=496x2−12x+7=49

6x212x42=0⇔6x2−12x−42=0 

22 tháng 9 2020

Với mọi x ta có \(x^2+3x+3=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}>0;2x^2+3x+2=2\left(x+\frac{3}{4}\right)^2+\frac{7}{8}>0\)

Áp dụng bất đẳng thức cosi cho 3 số

\(\sqrt[3]{x^2+3x+3}=\sqrt[3]{\left(x^2+3x+3\right)\cdot1\cdot1}\le\frac{x^2+3x+3+1+1}{3}=\frac{x^2+3x+5}{3}\)

\(\sqrt[3]{2x^2+3x+2}=\sqrt[3]{\left(2x^2+3x+2\right)\cdot1\cdot1}\le\frac{2x^2+3x+4}{3}\)

\(\Rightarrow6x^2+12x+8\le\frac{x^2+3x+5}{3}+\frac{2x^2+3x+4}{3}=x^2+2x+3\)

\(\Rightarrow5x^2+10x+5\le0\Rightarrow5\left(x+1\right)^2\le0\Rightarrow x=-1\)

vậy phương trình có nghiệm x=-1

22 tháng 9 2020

Bài này sử dụng cách đặt ẩn phụ sẽ đơn giản và nhanh hơn

ĐKXĐ: x2 - 3x + 3 \(\ge\) 0

Đặt t = \(\sqrt{x^2-3x+3}\) (t \(\ge\) 0)

=> t2 = x2 - 3x + 3 <=> x2 - 3x = t2 - 3

Khi đó ta có pt: 2(t2 - 3) + t + 3 = 0

<=> 2t2 - 6 + t + 3 = 0

<=> 2t2 + t - 3 = 0

<=> (t - 1)(2t + 3) = 0 <=> \(\orbr{\begin{cases}t=1\left(tm\right)\\t=-\frac{3}{2}\left(ktm\right)\end{cases}}\)

Với t = 1 ta có: x2 - 3x = 12 - 3

<=> x2 - 3x+  2 = 0

<=> (x - 1)(x - 2) = 0 <=> \(\orbr{\begin{cases}x=1\\x=2\end{cases}\left(tmđk\right)}\)

Vậy S = \(\left\{1;2\right\}\)

15 tháng 3 2020

Đặt: \(\sqrt{x^2-3x+3}=t\ge0\)

=> \(2x^2-6x=2\left(x^2-3x\right)=2\left(t^2-3\right)\)

Ta có phương trình ẩn t : \(2\left(t^2-3\right)+t+3=0\)

<=> \(2t^2+t-3=0\)<=> t = 1 ( tm ) hoặc t = -3/2 ( loại)

Với t = 1 ta có: \(\sqrt{x^2-3x+3}=1\)

<=> \(x^2-3x+2=0\)

<=> x = 1 hoặc x = 2

26 tháng 8 2020

Ta có: \(2x-x^2+\sqrt{6x^2-12x+7}=0\) (   ĐK: \(x\inℝ\))

    \(\Leftrightarrow\sqrt{6x^2-12x+7}=x^2-2x\)

    \(\Leftrightarrow\left(\sqrt{6x^2-12x+7}\right)^2=\left(x^2-2x\right)^2\)

    \(\Leftrightarrow6x^2-12x+7=x^4-4x^3+4x^2\)

    \(\Leftrightarrow x^4-4x^3-2x^2+12x-7=0\)

    \(\Leftrightarrow\left(x^4-2x^3+x^2\right)-\left(2x^3-4x^2+2x\right)-\left(7x^2-14x+7\right)=0\)

    \(\Leftrightarrow x^2\left(x^2-2x+1\right)-2x.\left(x^2-2x+1\right)-7.\left(x^2-2x+1\right)=0\)

    \(\Leftrightarrow\left(x^2-2x-7\right)\left(x-1\right)^2=0\)

\(\left(x-1\right)^2=0\)\(\Leftrightarrow\)\(x-1=0\)\(\Leftrightarrow\)\(x=1\)\(\left(TM\right)\)

\(x^2-2x-7=0\)\(\Leftrightarrow\)\(\left(x^2-2x+1\right)-8=0\)

                                          \(\Leftrightarrow\)\(\left(x-1\right)^2=8\)

                                          \(\Leftrightarrow\)\(x-1=\pm2\sqrt{2}\)

                                          \(\Leftrightarrow\)\(\hept{\begin{cases}x-1=2\sqrt{2}\\x-1=-2\sqrt{2}\end{cases}}\)

                                           \(\Leftrightarrow\)\(\hept{\begin{cases}x=1+2\sqrt{2}\approx3,8284\left(TM\right)\\x=1-2\sqrt{2}\approx-1,8284\left(TM\right)\end{cases}}\)

Vậy \(S=\left\{-1,8284;1;3,8284\right\}\)

25 tháng 11 2018

\(2x-x^2+\sqrt{6x^2-12x+7}=0\Leftrightarrow\sqrt{6\left(x^2-2x\right)+7}=x^2-2x\)(1)

Đặt \(t=x^2-2x\)(t\(\ge0\))

Vậy (1)\(\Leftrightarrow\sqrt{6t+7}=t\Leftrightarrow6t+7=t^2\Leftrightarrow t^2-6t-7=0\Leftrightarrow t^2+t-7t-7=0\Leftrightarrow t\left(t+1\right)-7\left(t+1\right)=0\Leftrightarrow\left(t+1\right)\left(t-7\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}t+1=0\\t-7=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}t=-1\left(ktm\right)\\t=7\left(tm\right)\end{matrix}\right.\)\(\Leftrightarrow t=7\Leftrightarrow x^2-2x=7\Leftrightarrow x^2-2x-7=0\Leftrightarrow x^2-2x+1=8\Leftrightarrow\left(x-1\right)^2=8\Leftrightarrow x-1=\pm2\sqrt{2}\Leftrightarrow x=1\pm2\sqrt{2}\)Vậy S={\(1\pm2\sqrt{2}\)}

30 tháng 11 2018

thanks

15 tháng 10 2016

b/ Xác định điều kiện xác định ta có

\(\hept{\begin{cases}2-x^2+2x\ge0\\-7x-8\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}1-\sqrt{3}\le x\le1+\sqrt{3}\\x\le\frac{-8}{7}\end{cases}}\)

=> Tập xác định của phương trình là tập rỗng nên phương trình vô nghiệm

15 tháng 10 2016

Cái đề đúng không thế cháu hình như bị vô nghiệm hết cả 2 bài luôn