\(x^2+4\left(|x-2|-x\right)-1=0\)

2) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2021

a, \(x^2+4\left|x-2\right|-x-1=0\)

Với \(x\ge2\)phương trình có dạng : 

\(x^2+4x-8-4x-1=0\Leftrightarrow x^2-9=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=3\left(tm\right);x=-3\left(ktm\right)\)

Với \(x< 2\)phương trình có dạng : 

\(x^2-4x+8-4x-1=0\Leftrightarrow x^2-7=0\)

\(\Leftrightarrow\left(x-\sqrt{7}\right)\left(x+\sqrt{7}\right)=0\Leftrightarrow x=\sqrt{7}\left(ktm\right);x=-\sqrt{7}\left(tm\right)\)

Vậy tập nghiệm của phương trình là S = { \(-\sqrt{7};3\)

3 tháng 6 2021

Má, gõ xong bấm nhầm phát mất hết luôn :((

a) Phương trình có 2 nghiệm: x1=1;x2=3

b)Phương trình có 1 nghiệm: \(x=\frac{\sqrt{21}-5}{4}\)

c) ĐKXĐ: \(\hept{\begin{cases}2x\ne0\\\frac{6x-1}{2x}>0\\6x-1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\\frac{6x-1}{2x}>0\\x\ne\frac{1}{6}\end{cases}}}\)(T chưa học giải bất phương trình dạng thương)

Ta đặt \(\sqrt{\frac{6x-1}{2x}}=t\Rightarrow\frac{2x}{6x-1}=\frac{1}{t^2}\) 

Pt đã cho tương đương: \(2t=\frac{1}{t^2}+1\Leftrightarrow2t^3-t^2-1=0\)

\(\Leftrightarrow2t^3-2t^2-t^2+t-t+1=0\)

\(\Leftrightarrow\left(2t^2-t-1\right)\left(t-1\right)=0\)

\(\Leftrightarrow\left(t-1\right)^2\left(2t+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=1\\t=-\frac{1}{2}\left(ktm\right)\end{cases}}\)

Với \(t=1\Leftrightarrow6x-1=2x\Leftrightarrow x=\frac{1}{4}\)

Ta thử lại nghiệm, thay \(x=\frac{1}{4}\)vào pt ban đầu ta đc:

\(2\sqrt{\frac{\frac{6}{4}-1}{\frac{2}{4}}}-\frac{\frac{2}{4}}{\frac{6}{4}-1}-1=0\Leftrightarrow2-1-1=0\Leftrightarrow0=0\)

Vậy pt có 1 nghiệm x=1/4

26 tháng 8 2017

1/ \(3x^2+6x-\frac{4}{3}=\sqrt{\frac{x+7}{3}}\)

Đặt \(t+1=\sqrt{\frac{x+7}{3}}\)

\(\Leftrightarrow3t^2+6t-4=x\) từ đây ta có hệ

\(\hept{\begin{cases}3t^2+6t-4=x\\9x^2+18x-4=t\end{cases}}\)

Tới đây thì đơn giản rồi

26 tháng 8 2017

2/ \(9x^2-x-4=2\sqrt{x+3}\)

\(\Leftrightarrow9x^2=x+3+2\sqrt{x+3}+1\)

\(\Leftrightarrow9x^2=\left(\sqrt{x+3}+1\right)^2\)

Tự làm nốt

28 tháng 7 2015

Chia nhỏ ra đăng đi thớt :))

28 tháng 8 2016

bạn đăng

vậy đến bố tổ conf biết 

k thì 2 nha

17 tháng 10 2020

1) Ta có: \(\left(\sqrt{12}-6\sqrt{3}+\sqrt{24}\right)\cdot\sqrt{6}-\left(\frac{5}{2}\sqrt{2}+12\right)\)

\(=\left(2\sqrt{3}-6\sqrt{3}+2\sqrt{6}\right)\cdot\sqrt{6}-\left(\sqrt{\frac{25}{4}\cdot2}+12\right)\)

\(=\left(-4\sqrt{3}+2\sqrt{6}\right)\cdot\sqrt{6}-\left(\sqrt{\frac{50}{4}}+12\right)\)

\(=-12\sqrt{2}+12-\frac{5\sqrt{2}}{2}-12\)

\(=\frac{-24\sqrt{2}-5\sqrt{2}}{2}\)

\(=\frac{-29\sqrt{2}}{2}\)

2) Ta có: \(\frac{26}{2\sqrt{3}+5}-\frac{4}{\sqrt{3}-2}\)

\(=\frac{26\left(5-2\sqrt{3}\right)}{\left(5+2\sqrt{3}\right)\left(5-2\sqrt{3}\right)}+\frac{4}{2-\sqrt{3}}\)

\(=\frac{26\left(5-2\sqrt{3}\right)}{25-12}+\frac{4\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)

\(=2\left(5-2\sqrt{3}\right)+4\left(2+\sqrt{3}\right)\)

\(=10-4\sqrt{3}+8+4\sqrt{3}\)

\(=18\)

3) ĐK để phương trình có nghiệm là: x≥0

Ta có: \(\sqrt{x^2-6x+9}=2x\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=2x\)

\(\Leftrightarrow\left|x-3\right|=2x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x\\x-3=-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-3-2x=0\\x-3+2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x-3=0\\3x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x=3\\3x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)

Vậy: S={1}

4) ĐK để phương trình có nghiệm là: \(x\ge\frac{1}{2}\)

Ta có: \(\sqrt{4x^2+1}=2x-1\)

\(\Leftrightarrow\left(\sqrt{4x^2+1}\right)^2=\left(2x-1\right)^2\)

\(\Leftrightarrow4x^2+1=4x^2-4x+1\)

\(\Leftrightarrow4x^2+1-4x^2+4x-1=0\)

\(\Leftrightarrow4x=0\)

hay x=0(loại)

Vậy: S=∅

31 tháng 5 2018

4) \(2x^2+2x+1=\left(4x-1\right)\sqrt{x^2+1}\)

\(\Leftrightarrow\left[\left(4x-1\right)\sqrt{x^2+1}\right]^2=\left(2x^2+2x+1\right)^2\)

\(\Leftrightarrow\left(4x-1\right)^2.\left(x^2+1\right)=4x^4+4x^2+1+8x^3+4x^2+4x\)

\(\Leftrightarrow16x^4+16x^2-8x^3-8x+x^2+1=4x^4+8x^2+8x^3+4x+1\)

\(\Leftrightarrow16x^4+16x^2-8x^3-8x+x^2-4x^4-8x^2-8x^3-4x=-1+1\)

\(\Leftrightarrow16x^4-4x^4-8x^3-8x^3+16x^2+x^2-8x^2-8x-4x=0\)

\(\Leftrightarrow12x^4+9x^2-16x^3-12x=0\)

\(\Leftrightarrow x\left[3x\left(4x^2+3\right)-4\left(4x^2+3\right)\right]=0\)

\(\Leftrightarrow x\left(4x^2+3\right)\left(3x-4\right)=0\)

\(\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\4x^2+3=0\\x=\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(lo\text{ại}\right)\\4x^2+3=0\left(v\text{ô}-l\text{ý}\right)\\x=\dfrac{4}{3}\left(nh\text{ậ}n\right)\end{matrix}\right.\)

S=\(\left\{\dfrac{4}{3}\right\}\)