1) Cho a,b,ca,b,c là các số thực dương thoả: abc=1abc=1. Cmr:aba5+b5+ab+bcb5+c5+bc+cac5+a5+ca≤1aba5+b5+ab+bcb5+c5+bc+cac5+a5+ca≤12) Cho a,b,ca,b,c là các số thực dương thoả mãn: a2+b2+c2=1a2+b2+c2=1. Tìm giả trị nhỏ nhất của:abc+bca+cababc+bca+cab3) Cho a≥6a≥6. CMR: a2+6√a−√6≥36a2+6a−6≥364) Cho a,b,c,da,b,c,d là các số nguyên và 1≤a≤b≤c≤d≤901≤a≤b≤c≤d≤90. Tìm giá trị nhỏ nhất...
Đọc tiếp
1) Cho a,b,ca,b,c là các số thực dương thoả: abc=1abc=1. Cmr:
aba5+b5+ab+bcb5+c5+bc+cac5+a5+ca≤1aba5+b5+ab+bcb5+c5+bc+cac5+a5+ca≤1
2) Cho a,b,ca,b,c là các số thực dương thoả mãn: a2+b2+c2=1a2+b2+c2=1. Tìm giả trị nhỏ nhất của:
abc+bca+cababc+bca+cab
3) Cho a≥6a≥6. CMR: a2+6√a−√6≥36a2+6a−6≥36
4) Cho a,b,c,da,b,c,d là các số nguyên và 1≤a≤b≤c≤d≤901≤a≤b≤c≤d≤90. Tìm giá trị nhỏ nhất của: P=ab+3cdP=ab+3cd
5) Cho các số thực dương x,a,b,cx,a,b,c thoả điều kiện: x2=a2+b2+c2x2=a2+b2+c2.
CMR: ax+2a+bx+2b+c2+2c≤32+√3ax+2a+bx+2b+c2+2c≤32+3
6) Tìm giá trị lớn nhất và nhỏ nhất của hàm số:
y=2+√2sin(x+Π4)+2√1+sinx+cosx+sinxcosxy=2+2sin(x+Π4)+21+sinx+cosx+sinxcosx, với x∈Rx∈R
7) Cho x>0x>0, y>0y>0 và x+2y<5Π4x+2y<5Π4. CMR:
cos(x+y)<ysinxxsinycos(x+y)<ysinxxsiny
Điều kiện : x > 0
Ta có : log2x + log4x + log8x = 11
<=> log2x + log22x + log23x = 11
<=> log2x + \(\dfrac{1}{2}\)log2x + \(\dfrac{1}{3}\)log2x = 11
<=> \(\dfrac{11}{6}\)log2x = 11 <=> log2x = 6 <=> x = 26 = 64 ( nhận )