\(y^2-2y+3=\frac{6}{x^2+2x+4}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2016

nhầm ở dòng thứ 2 từ dưới lên: \(\hept{\begin{cases}\left(x-1\right)^2+2=2\\\frac{6}{\left(x+1\right)^2+3}=2\end{cases}}\) ms đúng ,sau vẫn giải bth

3 tháng 9 2016

\(y^2-2y+3=\frac{6}{x^2+2x+4}\)

\(y^2-2y+1+2=\frac{6}{x^2+2x+1+3}\)

\(\left(y-1\right)^2+2=\frac{6}{\left(x+1\right)^2+3}\)

\(\left(y-1\right)^2+2\ge2\) với mọi y

 \(\left(x+1\right)^2+3\ge3=>\frac{6}{\left(x+1\right)^2+3}\le\frac{6}{3}=2\) với mọi x

Ta có : \(VT\ge2;VP\le2\) nên để \(VT=VP\)

thì \(\hept{\begin{cases}\left(y-1\right)^2+2=0\\\frac{6}{\left(x+1\right)^2+3}=0\end{cases}}< =>\hept{\begin{cases}y=1\\x=-1\end{cases}}\)

Vậy x=-1;y=1 là nghiệm của pt........

a, Đặt \(x^2-4x+8=a\left(a>0\right)\)

\(\Rightarrow a-2=\frac{21}{a+2}\)

\(\Leftrightarrow a^2-4=21\Rightarrow a^2=25\Rightarrow a=5\)

Thay vào là ra

9 tháng 3 2020

b) ĐK: \(y\ne1\)

bpt <=> \(\frac{4\left(1-y\right)}{1-y^3}+\frac{1+y+y^2}{1-y^3}+\frac{2y^2-5}{1-y^3}\le0\)

<=> \(\frac{3y^2-3y}{1-y^3}\le0\)

\(\Leftrightarrow\frac{y\left(y-1\right)}{\left(y-1\right)\left(y^2+y+1\right)}\ge0\)

\(\Leftrightarrow\frac{y}{y^2+y+1}\ge0\)

vì \(y^2+y+1=\left(y+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

nên bpt <=> \(y\ge0\)

20 tháng 4 2018

a/ Đặt \(\hept{\begin{cases}\frac{x+1}{x-2}=a\\\frac{x+1}{x-4}=b\end{cases}}\) thì có

\(a^2+b-\frac{12b^2}{a^2}=0\)

\(\Leftrightarrow\left(a^2-3b\right)\left(a^2+4b\right)=0\)

b/ \(2x^2+3xy-2y^2=7\)

\(\Leftrightarrow\left(2x-y\right)\left(x+2y\right)=7\)

11 tháng 6 2017

1)

a) \(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}< =>\frac{2\left(x+5\right)}{2\left(3x-6\right)}-\frac{3x-6}{2\left(3x-6\right)}=\frac{3\left(2x-3\right)}{3\left(2x-4\right)}.\)

(đk:x khác \(\frac{1}{2}\))

\(\frac{2x+10}{6x-12}-\frac{3x-6}{6x-12}=\frac{6x-9}{6x-12}< =>2x+10-3x+6=6x-9< =>x=\frac{25}{7}\)

Vậy x=\(\frac{25}{7}\)

b) /7-2x/=x-3 \(x\ge\frac{7}{2}\)

(đk \(x\ge3,\frac{7}{2}< =>x\ge\frac{7}{2}\))

\(\Rightarrow\orbr{\begin{cases}7-2x=x-3\\7-2x=-\left(x-3\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{10}{3}\left(< \frac{7}{2}\Rightarrow l\right)\\x=4\left(tm\right)\end{cases}}}\)

Vậy x=4

2)

\(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}>\frac{x-4}{5}+\frac{x-5}{6}\)

\(\Leftrightarrow\frac{30\left(x-1\right)}{60}+\frac{20\left(x-2\right)}{60}+\frac{15\left(x-3\right)}{60}-\frac{12\left(x-4\right)}{60}-\frac{10\left(x-5\right)}{60}>0\)

\(\Leftrightarrow30x-30+20x-40+15x-45-12x+48-10x+50>0\Leftrightarrow43x-17>0\Leftrightarrow x>\frac{17}{43}\)

NV
17 tháng 4 2019

a/

\(9x^2+25y^2+1+30xy-6x-10y+4y^2-20y+25=0\)

\(\Leftrightarrow\left(3x+5y-1\right)^2+\left(2y-5\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+5y-1=0\\2y-5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\frac{23}{6}\\y=\frac{5}{2}\end{matrix}\right.\)

b/

\(4x^2+4y^2+8xy+x^2-2x+1+y^2+2y+1=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

c/

\(y^2-2y+1+2=\frac{6}{x^2+2x+1+3}\)

\(\Leftrightarrow\left(y-1\right)^2+2=\frac{6}{\left(x+1\right)^2+3}\)

Ta có \(VT=\left(y-1\right)^2+2\ge2\)

\(\left(x+1\right)^2+3\ge3\Rightarrow VP=\frac{6}{\left(x+1\right)^2+3}\le\frac{6}{3}=2\)

\(\Rightarrow VT\ge VP\)

Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}y-1=0\\x+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

d/

\(\frac{-9x^2+18x-9-8}{x^2-2x+1+2}=y^2+4y+4-4\)

\(\Leftrightarrow\frac{-9\left(x-1\right)^2-8}{\left(x-1\right)^2+2}=\left(y+2\right)^2-4\)

\(\Leftrightarrow\frac{-9\left(x-1\right)^2-18+10}{\left(x-1\right)^2+2}=\left(y+2\right)^2-4\)

\(\Leftrightarrow-9+\frac{10}{\left(x-1\right)^2+2}=\left(y+2\right)^2-4\)

\(\Leftrightarrow\frac{10}{\left(x-1\right)^2+2}=\left(y+2\right)^2+5\)

Ta có \(\left(x-1\right)^2+2\ge2\Rightarrow\frac{10}{\left(x-1\right)^2+2}\le\frac{10}{2}=5\Rightarrow VT\le5\)

\(\left(y+2\right)^2+5\ge5\Rightarrow VP\ge5\)

\(\Rightarrow VT\le VP\)

Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

20 tháng 7 2019

\(\text{a) }\frac{6}{x-4}-\frac{x}{x+2}=\frac{6}{x-4}.\frac{x}{x+2}\)

\(ĐKXĐ:x\ne-2;x\ne4\)

\(MTC:\left(x-4\right)\left(x+2\right)\)

\(\Leftrightarrow\frac{6\left(x+2\right)}{\left(x-4\right)\left(x+2\right)}-\frac{x\left(x-4\right)}{\left(x-4\right)\left(x+2\right)}=\frac{6x}{\left(x-4\right)\left(x+2\right)}\)

\(\Rightarrow6\left(x+2\right)-x\left(x-4\right)=6x\)

\(\Leftrightarrow6x+12-x^2+4x=6x\)

\(\Leftrightarrow6x+12-x^2+4x-6x=0\)

\(\Leftrightarrow-x^2+4x+12=0\)

\(\Leftrightarrow-\left(x^2-4x-12\right)=0\)

\(\Leftrightarrow x^2-4x-12=0\)

\(\Leftrightarrow x^2+2x-6x-12=0\)

\(\Leftrightarrow x\left(x+2\right)-6\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-6\right)=0\)

\(\Leftrightarrow x=-2\left(\text{loại}\right)\text{ hoặc }x=6\left(\text{nhận}\right)\)

Vậy \(S=\left\{6\right\}\)

\(\text{b) }\frac{2x+3}{2x-1}=\frac{x-3}{x+5}\)

\(ĐKXĐ:x\ne\frac{1}{2};x\ne-5\)

\(\Leftrightarrow\left(2x+3\right)\left(x+5\right)=\left(2x-1\right)\left(x-3\right)\left[\text{Tỉ lệ thức}\right]\)

\(\Leftrightarrow2x^2+10x+3x+15=2x^2-6x-x+3\)

\(\Leftrightarrow2x^2+13x+15=2x^2-7x+3\)

\(\Leftrightarrow2x^2+13x-2x^2+7x=3-15\)

\(\Leftrightarrow20x=-12\)

\(\Leftrightarrow x=\frac{-12}{20}=\frac{-3}{5}\)

Vậy \(S=\left\{\frac{-3}{5}\right\}\)