Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ĐK x\(\ge5\) Đặt \(\sqrt{x-5}=y\Rightarrow x=y^2+5\)
Phương tình đã cho trở thành:\(y^2+5+y=y+6\)
\(\Leftrightarrow y^2-1=0\)
\(\Leftrightarrow y=-1;y=1\)
y=-1 loại vì \(\sqrt{x=5}\ge0\)
Ta có \(y=1\Rightarrow\sqrt{x-5}=1\Leftrightarrow x=6\)
b,làm tương tự câu a
c,ĐK:\(x\ge2\) Phương trình đã cho tương đương:\(\dfrac{x^2-8}{\sqrt{x-2}}=0\)
\(\Rightarrow\left[{}\begin{matrix}x_1=2\sqrt{2}\\x_2=-2\sqrt{2}\left(l\right)\end{matrix}\right.\)
Vậy phương trình có nghiệm \(x=2\sqrt{2}\).
b) Đkxđ: \(\left\{{}\begin{matrix}1-x\ge0\\x-1\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x\ge1\end{matrix}\right.\)\(\Leftrightarrow x=1\).
Thay x = 1 vào phương trình ta có:
\(\sqrt{1-1}+1=\sqrt{1-1}+2\)\(\Leftrightarrow1=2\) (vô lý).
Vậy phương trình vô nghiệm.
a) \(\sqrt{x^2-3x+3}+\sqrt{x^2-3x+6}=3\)
Đặt \(\sqrt{x^2-3x+3}=a;\sqrt{x^2-3x+6}=b\left(a;b>0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=3\\b^2-a^2=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=3\\\left(b+a\right)\left(b-a\right)=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+a=3\\b-a=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=2\\a=1\end{matrix}\right.\) (nhận)
\(\Rightarrow\sqrt{x^2-3x+3}=1\)
\(\Leftrightarrow x^2-3x+3=1\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\) (nhận)
b) \(\sqrt{3-x+x^2}-\sqrt{2+x-x^2}=1\)
Đặt \(\sqrt{3-x+x^2}=a;\sqrt{2+x-x^2}=b\left(a;b>0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}a-b=1\\a^2+b^2=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+1\\\left(b^2+2b+1\right)+b^2-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+1\\2\left(b-1\right)\left(b+2\right)=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\) (vì \(b+2>0\)) (nhận)
\(\Rightarrow\sqrt{2+x-x^2}=1\)
\(\Leftrightarrow2+x-x^2=1\)
\(\Leftrightarrow x^2-x-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\\x=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\) (nhận)
d) \(5\sqrt{x}+\dfrac{5}{2\sqrt{x}}=2x+\dfrac{1}{2x}+4\)
\(\Leftrightarrow2\left(x+\dfrac{1}{4x}\right)+4=5\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)\)
\(\Leftrightarrow2\left[\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)^2-1\right]-5\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)+4=0\)
\(\Leftrightarrow2\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)^2-5\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)+2=0\)
Đặt \(\sqrt{x}+\dfrac{1}{2\sqrt{x}}=a\left(a\ge\sqrt{2}\right)\)
\(\Rightarrow2a^2-5a+2=0\)
\(\Leftrightarrow\left(a-2\right)\left(2a-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2\left(\text{nhận}\right)\\a=\dfrac{1}{2}\left(\text{loại}\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x}+\dfrac{1}{2\sqrt{x}}=2\)
\(\Leftrightarrow2x-4\sqrt{x}+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{2+\sqrt{2}}{2}\\\sqrt{x}=\dfrac{2-\sqrt{2}}{2}\end{matrix}\right.\) (nhận)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+2\sqrt{2}}{2}\\x=\dfrac{3-2\sqrt{2}}{2}\end{matrix}\right.\) (nhận)
a) ĐKXĐ: x ≤ 3.
+x = + 1 ⇔ x = 1. Tập nghiệm S = {1}.
b) ĐKXĐ: x = 2.
Giá trị x = 2 nghiệm đúng phương trình. Tập nghiệm S = {2}.
c) ĐKXĐ: x > 1.
⇔ = 0
=> x = 3 (nhận vì thỏa mãn ĐKXĐ)
x = -3 (loại vì không thỏa mãn ĐKXĐ).
Tập nghiệm S = {3}.
d) xác định với x ≤ 1, xác định với x ≥ 2.
Không có giá trị nào của x nghiệm đúng phương trình.
Do đó phương trình vô nghiệm.
ĐKXĐ: x – 6 ≥ 0 ⇔ x > 6. Bình phương hai vế thì được 5x + 6 = (x – 6)2 ⇔ x2 = 2 (loại), x2 = 15 (nhận).
b) ĐKXĐ: – 2 ≤ x ≤ 3. Bình phương hai vế thì được 3 - x = x + 3 + 2
⇔ -2x = 2.
Điều kiện x ≤ 0. Bình phương tiếp ta được:
x2 = x + 2 => x1 = -1 (nhận); x2 = 2 (loại).
Kết luận: Tập nghiệm S {-1}.
c) ĐKXĐ: x ≥ -2.
=> 2x2 + 5 = (x + 2)2 => x2 - 4x + 1 = 0
=> x1 =2 – (nhận), x2 = 2 + (nhận).
d) ĐK: x ≥ .
=> 4x2 + 2x + 10 = (3x + 1)2 => x1 = (loại), x2 = 1 (nhận).
a) \(x+1+\dfrac{2}{x+3}=\dfrac{x+5}{x+3}\)
\(\Leftrightarrow x+\dfrac{x+5}{x+3}=\dfrac{x+5}{x+3}\)
\(\Leftrightarrow x=0\)
b) \(2x+\dfrac{3}{x-1}=\dfrac{3x}{x-1}\)
\(\Leftrightarrow x+x+\dfrac{3}{x-1}=\dfrac{3x}{x-1}\)
\(\Leftrightarrow x+\dfrac{x\left(x-1\right)+3}{x-1}=\dfrac{3x}{x-1}\)
\(\Leftrightarrow x+\dfrac{x^2-x+3}{x-1}=\dfrac{3x}{x-1}\)
\(\Leftrightarrow\dfrac{x^2-x+3}{x-1}=\dfrac{3x}{x-1}-x\)
\(\Leftrightarrow\dfrac{x^2-x+3}{x-1}=\dfrac{3x-x\left(x-1\right)}{x-1}\)
\(\Leftrightarrow\dfrac{x^2-x+3}{x-1}=\dfrac{3x-x^2+x}{x-1}\)
\(\Leftrightarrow x^2-x+3=3x-x^2+x\) ( điều kiện \(x\ne1\) )
\(\Leftrightarrow2x^2-5x+3=0\)
\(\Delta=b^2-4ac\)
\(\Delta=1\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{3}{2}\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=1\left(loại\right)\end{matrix}\right.\)
Vậy \(x=\dfrac{3}{2}\)
c) \(\dfrac{x^2-4x-2}{\sqrt{x-2}}=\sqrt{x-2}\)
\(\Leftrightarrow x^2-4x-2=\sqrt{\left(x-2\right)^2}\) ( điều kiện \(x>2\) )
\(\Leftrightarrow x^2-4x-2=x-2\)
\(\Leftrightarrow x^2-5x=0\)
\(\Leftrightarrow x\left(x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=5\end{matrix}\right.\)
Vậy \(x=5\)
d) \(\dfrac{2x^2-x-3}{\sqrt{2x-3}}=\sqrt{2x-3}\)
\(\Leftrightarrow2x^2-x-3=\sqrt{\left(2x-3\right)^2}\) ( điều kiện \(x>\dfrac{3}{2}\) )
\(\Leftrightarrow2x^2-x-3=2x-3\)
\(\Leftrightarrow2x^2-3x=0\)
\(\Leftrightarrow x\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=\dfrac{3}{2}\left(loại\right)\end{matrix}\right.\)
Vậy phương trình vô nghiệm
a) Ta có: \(x^2+\dfrac{1}{x^2+1}=x^2+1+\dfrac{1}{x^2+1}-1\)\(\ge2\sqrt{\left(x^2+1\right).\dfrac{1}{x^2+1}}-1=2-1=1\).
Vì vậy: \(x^2+\dfrac{1}{x^2+1}\ge1\) nên BPT vô nghiệm.
b) Áp dụng BĐT Cô-si ta có:
\(\sqrt{x^2-x+1}+\dfrac{1}{\sqrt{x^2-x+1}}\ge\)\(2\sqrt{\left(x^2-x+1\right).\dfrac{1}{x^2-x+1}}=2\).
Vì vậy BPT vô nghiệm.
1.
a/ ĐKXĐ: \(-1\le x\le5\)
\(\Leftrightarrow\sqrt{x+3}\le\sqrt{5-x}+\sqrt{x+1}\)
\(\Leftrightarrow x+3\le6+2\sqrt{\left(5-x\right)\left(x+1\right)}\)
\(\Leftrightarrow x-3\le2\sqrt{-x^2+4x+5}\)
- Với \(x< 3\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP\ge0\end{matrix}\right.\) BPT luôn đúng
- Với \(x\ge3\) cả 2 vế ko âm, bình phương:
\(x^2-6x+9\le-4x^2+16x+20\)
\(\Leftrightarrow5x^2-22x-11\le0\) \(\Rightarrow\frac{11-4\sqrt{11}}{5}\le x\le\frac{11+4\sqrt{11}}{5}\)
\(\Rightarrow3\le x\le\frac{11+4\sqrt{11}}{5}\)
Vậy nghiệm của BPT đã cho là \(-1\le x\le\frac{11+4\sqrt{11}}{5}\)
1b/
Đặt \(\sqrt{2x^2+8x+12}=t\ge2\)
\(\Rightarrow x^2+4x=\frac{t^2}{2}-6\)
BPT trở thành:
\(\frac{t^2}{2}-12\ge t\Leftrightarrow t^2-2t-24\ge0\) \(\Rightarrow\left[{}\begin{matrix}t\le-4\left(l\right)\\t\ge6\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x^2+8x+12}\ge6\)
\(\Leftrightarrow2x^2+8x-24\ge0\Rightarrow\left[{}\begin{matrix}x\le-6\\x\ge2\end{matrix}\right.\)
a) Gọi D là điều kiện xác định của biểu thức vế trái D = [- 8; +∞]. Vế trái dương với mọi x ∈ D trong khi vế phải là số âm. Mệnh đề sai với mọi x ∈ D. Vậy bất phương trình vô nghiệm.
b) Vế trái có ≥ 1 ∀x ∈ R,
≥ 1 ∀x ∈ R
=> + ≥ 2 ∀x ∈ R.
Mệnh đề sai ∀x ∈ R. Bất phương trình vô nghiệm.
c) ĐKXĐ: D = [- 1; 1]. Vế trái âm với mọi x ∈ D trong khi vế phải dương.
ĐKXĐ: \(x\ge1\)
\(x-1+\sqrt{5+\sqrt{x-1}}=5\)
Đặt \(\sqrt{x-1}=t\ge0\)
\(\Rightarrow t^2+\sqrt{t+5}=5\)
Đặt \(\sqrt{t+5}=u>0\Rightarrow u^2-t=5\)
\(\Rightarrow t^2+u=u^2-t\Leftrightarrow t^2-u^2+t+u=0\)
\(\Leftrightarrow\left(t+u\right)\left(t-u+1\right)=0\)
\(\Leftrightarrow t-u+1=0\) (do \(t>0;u>0\Rightarrow t+u>0\))
\(\Leftrightarrow t+1=\sqrt{t+5}\)
\(\Leftrightarrow t^2+2t+1=t+5\Leftrightarrow t^2+t-4=0\)
\(\Rightarrow t=\dfrac{-1+\sqrt{17}}{2}\)
\(\Rightarrow x=t^2+1=\dfrac{11-\sqrt{17}}{2}\)
giúp e ạ e cảm ơn
https://hoc24.vn/cau-hoi/cho-chop-sabcd-day-hinh-binh-hanh-m-la-trung-diem-sc-mat-anpha-chua-am-cat-sdsb-tai-ef-tinh-sdse.7474367749811