Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}=0\)
\(\Leftrightarrow\left(\sqrt[3]{x+1}+1\right)+\sqrt[3]{x+2}+\left(\sqrt[3]{x+3}-1\right)=0\)
\(\Leftrightarrow\frac{x+2}{\sqrt[3]{\left(x+1\right)^2}-\sqrt[3]{x+1}+1}+\frac{x+2}{\sqrt[3]{\left(x+2\right)^4}}+\frac{x+2}{\sqrt[3]{\left(x+3\right)^2}+\sqrt[3]{x+3}+1}\)(liên hợp tử mẫu)
\(\Leftrightarrow\left(x+2\right)\left(\frac{1}{\sqrt[3]{\left(x+1\right)^2}-\sqrt[3]{x+1}+1}+\frac{1}{\sqrt[3]{\left(x+2\right)^4}}+\frac{1}{\sqrt[3]{\left(x+3\right)^2}+\sqrt[3]{x+3}+1}\right)=0\)
\(\Leftrightarrow x+2=0\)( vì biểu thức thứ 2 luôn khác 0)
\(\Leftrightarrow x=-2\)
Vậy...
\(\left(\sqrt[3]{x+1}+\sqrt[3]{x+3}\right)\left(LH\right)=\sqrt[3]{x+2}\left(LH\right)\)
\(\Leftrightarrow2\left(x+2\right)=\sqrt[3]{x+2}\left(Lh\right)\)
=> x=-2 la nghiệm
x khác -2
\(2\sqrt[3]{\left(x+2\right)^2}=-\left(LH\right)\) Vô nghiệm
\(\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{5\sqrt{x}}{\sqrt{x}+3}=\frac{22}{x-9}\left(ĐK:x\ge0;x\ne9\right)\)
\(\Leftrightarrow\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)-5\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}=\frac{22}{x-9}\)
\(\Rightarrow\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)-5\sqrt{x}\left(\sqrt{x}-3\right)=22\)
\(\Leftrightarrow x+5\sqrt{x}+6-5x+15\sqrt{x}=22\)
\(\Leftrightarrow-4x+20\sqrt{x}-16=0\)
\(\Leftrightarrow x-5\sqrt{x}+4=0\)
\(\Leftrightarrow\left(\sqrt{x}-4\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-4=0\\\sqrt{x}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=16\left(tm\right)\\x=1\left(tm\right)\end{cases}}}\)
Vậy tập nghiệm của phương trình đã cho là : \(S=\left\{1;16\right\}\)
Chúc bạn học tốt !!!
1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)
Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)
2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)
\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)
\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)
\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)
Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)
\(\Rightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\left(tm\right)\)
Vậy pt có no x=2
1, \(x^2-5x+4-\sqrt{5-x}-\sqrt{x-2}=0\)ĐKXĐ \(2\le x\le5\)
ĐK dấu bằng xảy ra \(x^2-5x+4\ge0\)
Kết hơp với ĐKXĐ=> \(4\le x\le5\)
Khi đó Phương trình tương đương
\(x^2-7x+11+\left(x-4-\sqrt{5-x}\right)+\left(x-3-\sqrt{x-2}\right)=0\)
<=> \(x^2-7x+11+\frac{x^2-7x+11}{x-4+\sqrt{5-x}}+\frac{x^2-7x+11}{x-3+\sqrt{x-2}}=0\)
=> \(\orbr{\begin{cases}x^2-7x+11=0\\1+\frac{1}{x-4+\sqrt{5-x}}+\frac{1}{x-3+\sqrt{x-2}}=0\left(2\right)\end{cases}}\)
Phương trình (2) vô nghiệm với \(4\le x\le5\)=> VT>0
\(x^2-7x+11=0\)
Với \(4\le x\le5\)
\(S=\left\{\frac{7+\sqrt{5}}{2}\right\}\)
2.\(\sqrt{x+2}+\sqrt{3-x}=x^3+x^2-4x-1\)ĐKXĐ \(-2\le x\le3\)
<=> \(3x^3+3x^2-12x-3=3\sqrt{x+2}+3\sqrt{3-x}\)
<=> \(3x^3+3x^2-12x-12+\left(x+4-3\sqrt{x+2}\right)+\left(5-x-3\sqrt{3-x}\right)=0\)
<=> \(3\left(x^2-x-2\right)\left(x+2\right)+\frac{x^2-x-2}{x+4+3\sqrt{x+2}}+\frac{x^2-x-2}{5-x+3\sqrt{3-x}}=0\)
=> \(\orbr{\begin{cases}x^2-x-2=0\\3\left(x+2\right)+\frac{1}{x+4+3\sqrt{x+2}}+\frac{1}{5-x+3\sqrt{x-3}}=0\left(2\right)\end{cases}}\)
Phương trình (2) vô nghiệm với\(-2\le x\le3\)=> VT>0
\(S=\left\{2;-1\right\}\)
\(x.\sqrt[3]{x}-22\sqrt[3]{x^2}+4=0\)
Đặt \(\sqrt[3]{x}\Rightarrow t\left(t\ge0\right)\)
Thì pt đã cho tương đương :
\(t.x-t^2.22+4=0\)
Xét \(\Delta=x^2-4.\left(-22\right).4=x^2+352>0\)
nên pt có 2 nghiệm : \(t_1=\frac{-x+\sqrt{x^2+352}}{-44}=\sqrt[3]{x}\)easy :))
\(t_2=\frac{-x-\sqrt{x^2+352}}{-44}=\sqrt[3]{x}\)easy part 2 :0
Vậy nghiệm của pt trên là : ...
Chép sai đề kìa.