Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{x}+\sqrt{\frac{x}{9}}-\frac{1}{3}\sqrt{4x}=5\)
ĐK : x ≥ 0
<=>\(\sqrt{x}+\sqrt{x\times\frac{1}{9}}-\frac{1}{3}\sqrt{2^2x}=5\)
<=> \(\sqrt{x}+\sqrt{x\times\left(\frac{1}{3}\right)^2}-\left(\frac{1}{3}\times\left|2\right|\right)\sqrt{x}=5\)
<=> \(\sqrt{x}+\left|\frac{1}{3}\right|\sqrt{x}-\left(\frac{1}{3}\times2\right)\sqrt{x}=5\)
<=> \(\sqrt{x}+\frac{1}{3}\sqrt{x}-\frac{2}{3}\sqrt{x}=5\)
<=> \(\sqrt{x}\left(1+\frac{1}{3}-\frac{2}{3}\right)=5\)
<=> \(\sqrt{x}\times\frac{2}{3}=5\)
<=> \(\sqrt{x}=\frac{15}{2}\)
<=> \(x=\frac{225}{4}\)( tm )
a) ĐK: \(x\ge5\)
\(\sqrt{4x-20}+\frac{1}{3}\sqrt{9x-45}-\frac{1}{5}\sqrt{16x-80}=0\)
\(\Leftrightarrow\)\(\sqrt{4\left(x-5\right)}+\frac{1}{3}\sqrt{9\left(x-5\right)}-\frac{1}{5}\sqrt{16\left(x-5\right)}=0\)
\(\Leftrightarrow\)\(2\sqrt{x-5}+\sqrt{x-5}-\frac{4}{5}\sqrt{x-5}=0\)
\(\Leftrightarrow\)\(\frac{11}{5}\sqrt{x-5}=0\)
\(\Leftrightarrow\)\(x-5=0\)
\(\Leftrightarrow\)\(x=5\) (t/m)
Vậy
b) \(-5x+7\sqrt{x}=-12\)
\(\Leftrightarrow\)\(5x-7\sqrt{x}-12=0\)
\(\Leftrightarrow\)\(\left(\sqrt{x}+1\right)\left(5\sqrt{x}-12\right)=0\)
đến đây tự làm
c) d) e) bạn bình phương lên
f) \(VT=\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(x^4-2x^2+1\right)+25}\)
\(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2}\)
\(\ge\sqrt{9}+\sqrt{25}=8\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\x^2-1=0\end{cases}}\)\(\Leftrightarrow\)\(x=-1\)
Vậy...
Câu a thì mình chịu rồi @@ sorry nha
Còn câu b, bạn thấy rằng x2-3x+2-x2+x+1+2x-3=0 đúng không nào?
Nếu như bạn còn nhớ công thức a+b+c=0 <=> a3+b3+c3=3abc
Thì chắc chắn là bạn sẽ giải ra được bài này thôi. Đáp số là x=1 hoặc x=2 hoặc x=3/2 bạn nhé.
Chúc bạn giải được câu b này. Nếu như vẫn còn thắc mắc thì trả lời lại cho mình để mình gừi bài giải chi tiết nhé, do giờ mình đang bận @@
Em không chắc đâu ạ. Nhận thấy x = 2 là nghiệm của phương trình,ta biến đổi như sau:
ĐKXĐ: \(1\le x\le3\)
\(PT\Leftrightarrow x^2-4x+6+\left(x-1-\sqrt{x-1}\right)+\left(x-1-\sqrt{3-x}\right)-2x+2=0\)
\(\Leftrightarrow x^2-6x+8+\frac{\left(x-1\right)^2-\left(x-1\right)}{\left(x-1\right)+\sqrt{x-1}}+\frac{\left(x-1\right)^2-\left(3-x\right)}{\left(x-1\right)+\sqrt{3-x}}=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-2\right)+\frac{x^2-3x+2}{\left(x-1\right)+\sqrt{x-1}}+\frac{x^2-x-2}{\left(x-1\right)+\sqrt{3-x}}=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-2\right)+\frac{\left(x-2\right)\left(x-1\right)}{\left(x-1\right)+\sqrt{x-1}}+\frac{\left(x-2\right)\left(x+1\right)}{\left(x-1\right)+\sqrt{3-x}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4+\frac{x-1}{\left(x-1\right)+\sqrt{x-1}}+\frac{x+1}{\left(x-1\right)+\sqrt{3-x}}\right)=0\)
\(\Leftrightarrow x=2\)(chỗ này em không biết giải rõ ra thế nào nữa,chỉ biết x = 2 là nghiệm của cả hai cái ngoặc.Nhờ các anh chị chỉ rõ ra bước này giúp em ạ.Em cảm ơn)
ĐKXĐ \(1\le x\le3\)
áp dụng Cauchy ngược dấu
\(\sqrt{\left(x-1\right).1}\le\frac{x-1+1}{2}=\frac{x}{2}\)
\(\sqrt{\left(3-x\right).1}\le\frac{3-x+1}{2}=\frac{-x}{2}+2\)
\(\Rightarrow\sqrt{x-1}+\sqrt{3-x}\le\frac{x}{2}+\frac{-x}{2}+2=2\)
Theo giả thiết \(\sqrt{x-1}+\sqrt{3-x}=x^2-4x+6\)
\(\Rightarrow x^2-4x+6\le2\Leftrightarrow x^2-4x+4\le0\Leftrightarrow\left(x-2\right)^2\le0\)
Mà \(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\left(TMĐK\right)\)
Vậy phương trình đã cho có nghiệm duy nhất x=2