Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
PT:
đkxđ: \(x\ne0;x\ne2\)
Ta có: \(\frac{x+2}{x-2}=\frac{2}{x^2-2x}+\frac{1}{x}\)
\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}+\frac{x-2}{x\left(x-2\right)}\)
\(\Rightarrow x^2+2x=2+x-2\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(vl\right)\\x+1=0\end{cases}}\Rightarrow x=-1\)
BPT:
Ta có: \(\frac{x+1}{2}-x\le\frac{1}{2}\)
\(\Leftrightarrow\frac{x+1}{2}-x-\frac{1}{2}\le0\)
\(\Leftrightarrow\frac{x+1-2x-1}{2}\le0\)
\(\Leftrightarrow\frac{-x}{2}\le0\)
\(\Rightarrow-x\le0\)
\(\Rightarrow x\ge0\)
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)
\(\frac{x+2}{x-2}=\frac{2}{x^2-2x}+\frac{1}{x}\)
\(\Leftrightarrow\frac{2}{x\left(x-2\right)}+\frac{1}{x}-\frac{x+2}{x-2}=0\)
\(\Leftrightarrow\frac{2+x-2-x^2-2x}{x\left(x-2\right)}=0\)
\(\Leftrightarrow-x^2-x=0\)
\(\Leftrightarrow-x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=-1\left(tm\right)\end{cases}}}\)
Vậy \(S=\left\{-1\right\}\)
b) \(\frac{x+1}{2}-x\le\frac{1}{2}\)
\(\Leftrightarrow x+1-2x-1\le0\)
\(\Leftrightarrow-x\le0\)
\(\Leftrightarrow x\ge0\)
Vậy \(x\ge0\)
pT <=>\(\frac{x^4}{\left(x-2\right)^2}+\frac{x^2}{x-2}-2=0\)
đk: x khác 2
Đặt \(\frac{x^2}{x-2}=t\)
Ta có phương trình:
\(t^2+t-2=0\Leftrightarrow t^2+2t-t-2=0\Leftrightarrow t\left(t+2\right)-\left(t+2\right)=0\Leftrightarrow\left(t+2\right)\left(t-2\right)=0\)
<=> \(\orbr{\begin{cases}t=2\\t=-2\end{cases}}\)
Với t=2 ta có:
\(\frac{x^2}{x-2}=2\Leftrightarrow x^2=2x-4\Leftrightarrow x^2-2x+4=0\Leftrightarrow\left(x-1\right)^2+3=0\)vô lí
Với t=-2:
\(\frac{x^2}{x-2}=-2\Leftrightarrow x^2=-2x+4\Leftrightarrow x^2+2x=4\Leftrightarrow\left(x+1\right)^2=5\Leftrightarrow\orbr{\begin{cases}x+1=\sqrt{5}\\x+1=-\sqrt{5}\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{cases}}\)(tm)
Vậy...
\(\left(\frac{1}{x-2}-\frac{1}{x+2}\right)+\left(\frac{1}{x-1}-\frac{1}{x+1}\right)=0\)
\(\frac{x+2-x+2}{x^2-4}+\frac{x+1-x+1}{x^2-1}=0\)
\(\frac{4}{x^2-4}+\frac{2}{x^2-1}=0\)
\(4x^2-4+2x^2-8=0\)
\(6x^2-12=0\)
\(x^2=2\)
\(x=\sqrt{2}\)
ĐKXĐ: x≠-2,-1,1,2
Ta có :
\(\frac{1}{x-1}+\frac{1}{x-2}=\frac{1}{x+1}+\frac{1}{x+2}\)
<=> \(\frac{1}{x-1}-\frac{1}{x+1}=\frac{1}{x+2}-\frac{1}{x-2}\)
<=>\(\frac{2}{x^2-1}=\frac{-4}{x^2-4}\)
<=> \(2x^2-8=-4x^2+4\)
<=> \(6x^2=12\)
<=> \(x^2=2\)
<=>\(\hept{\begin{cases}x=\sqrt{2}\left(TMĐK\right)\\x=-\sqrt{2}\left(TMĐK\right)\end{cases}}\)
Vậy pt trên có tập nghiệm S={\(\sqrt{2},-\sqrt{2}\)}
k mk nha mn
\(\frac{2}{x^3-x^2-x+1}=\frac{3}{1-x^2}-\frac{1}{x+1}\)
<=> \(\frac{2}{\left(x^2-1\right)\left(x-1\right)}+\frac{3}{\left(x-1\right)\left(x+1\right)}+\frac{1}{x+1}=0\)
<=> \(\frac{2}{\left(x-1\right)^2\left(x+1\right)}+\frac{3\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}+\frac{\left(x-1\right)^2}{\left(x-1\right)^2\left(x+1\right)}=0\)
<=> \(2+3x-3+x^2-2x+1=0\)
<=> x2 + x = 0
<=> x(x + 1) = 0
<=> \(\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy S = {0; -1}
\(\frac{x-1}{x^2-x+1}-\frac{x+1}{x^2+x+1}=\frac{10}{x\left(x^4+x+1\right)}\)
\(\Leftrightarrow\frac{x\left(x-1\right)\left(x^2+x+1\right)-x\left(x+1\right)\left(x^2+x+1\right)-10}{x\left(x^4+x^2+1\right)}=0\)
\(\Rightarrow x\left(x^3-1\right)-x\left(x^3+1\right)-10=0\)
\(\Leftrightarrow x^4-x-x^4-x-10=0\)
\(\Leftrightarrow-2x-10=0\)
\(\Leftrightarrow x=-5\)
Điều kiện: x khác 0
Đặt \(\frac{x^2+1}{x}=t\Rightarrow\frac{x}{x^2+1}=\frac{1}{t}\)
Khi đó: \(\frac{x^2+1}{x}+\frac{x}{x^2+1}=\frac{5}{2}\)
\(\Leftrightarrow t+\frac{1}{t}=\frac{5}{2}\)
\(\Leftrightarrow\frac{t^2+1}{t}=\frac{5}{2}\Rightarrow2t^2+2=5t\)
\(\Leftrightarrow2t^2-5t+2=0\Leftrightarrow\left(2t-1\right)\left(t-2\right)=0\Leftrightarrow\orbr{\begin{cases}t=\frac{1}{2}\\t=2\end{cases}}\)
Nếu \(t=\frac{1}{2}\Rightarrow\frac{x^2+1}{x}=\frac{1}{2}\Rightarrow2x^2+2=x\)
\(\Leftrightarrow2x^2-x+2=0\)
Mà \(2x^2-x+2=2\left(x-\frac{1}{4}\right)^2+\frac{15}{8}>0\forall x\)
Nên \(x\in\varnothing\)
Nếu \(t=2\Rightarrow\frac{x^2+1}{x}=2\Rightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)(thỏa mãn ĐKXĐ)
Tập nghiệm của pt: \(S=\left\{1\right\}\)
\(\)
Theo BĐT AM-GM,ta có: \(x^2+1\ge2\left|x\right|\ge2x\Rightarrow\frac{x^2+1}{x}\ge2\)
Đặt \(\frac{x^2+t}{x}=t\left(t\ge2\right)\).Bài toán trở thành:
\(t+\frac{1}{t}=\frac{5}{2}\Leftrightarrow\left(\frac{1}{t}+\frac{t}{4}\right)+\frac{3t}{4}=\frac{5}{2}\)
Áp dụng BĐT AM-GM: \(VT\ge1+\frac{3t}{4}\ge1+\frac{6}{4}=\frac{5}{2}\)
Mà \(VT=\frac{5}{2}\) .Dấu "=" xảy ra khi \(\frac{1}{t}=\frac{t}{4}\Leftrightarrow t=2\Leftrightarrow\frac{x^2+1}{x}=2\Leftrightarrow x^2+1=2x\Leftrightarrow x=1\)
Vậy tập hợp nghiệm của phương trình: \(S=\left\{1\right\}\)
\(\frac{x^2+1}{x}+\frac{x}{x^2+1}=\frac{5}{2}\)
ĐK: x khác 0.
Đặt: \(\frac{x^2+1}{x}=t\ne0\)
Ta có phương trình ẩn t: \(t+\frac{1}{t}=\frac{5}{2}\Leftrightarrow2t^2-5t+2=0\Leftrightarrow\orbr{\begin{cases}t=2\\t=\frac{1}{2}\end{cases}}\)thỏa mãn
Với t = 2 ta có: \(\frac{x^2+1}{x}=2\Leftrightarrow x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)thỏa mãn
Với t =1/2 ta có: \(\frac{x^2+1}{x}=\frac{1}{2}\Leftrightarrow x^2-\frac{1}{2}x+1=0\Leftrightarrow\left(x^2-2.x.\frac{1}{4}+\frac{1}{16}\right)+\frac{15}{16}=0\)
<=> \(\left(x-\frac{1}{4}\right)^2+\frac{15}{16}=0\)phương trình vô nghiệm
Vậy x = 1
\(\frac{x^2+1}{x}+\frac{x}{x^2+1}=\frac{5}{2}\)ĐKXĐ : \(x\ne0\)
\(\frac{2\left(x^2+1\right)^2}{x\left(x^2+1\right)2}+\frac{2x^2}{x\left(x^2+1\right)2}=\frac{5x\left(x^2+1\right)}{x\left(x^2+1\right)2}\)
Khử mẫu ta đc : \(2\left(x^2+1\right)^2+2x^2=5x\left(x^2+1\right)\)
\(2x^4+4x^2+2+2x^2=5x^3+5x\)
\(2x^4+6x^2+2=5x^3+5x\)
\(2x^4+6x^2+2-5x^3-5x=0\)
\(\left(2x^2-x+2\right)\left(x-1\right)^2=0\)
TH1 : \(2x^2-x+2=0\)
Ta có : \(\left(-1\right)^2-4.2.2=1-16=-15< 0\)
Nên phương trình vô nghiệm
TH2 : \(\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy nghiệm phương trình là 1
\(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-x}+1\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}+\frac{3\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=\frac{3}{\left(x+1\right)\left(x-2\right)}+\frac{\left(x+1\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow x^2-4+3x+3=3+x^2-2x+x-2\)
\(\Leftrightarrow x^2-x^2+3x+2x-x=1+4-3\)
\(\Leftrightarrow4x=2\)
\(\Leftrightarrow x=\frac{1}{2}\)
ĐKXĐ \(x\ne0,-1,-2,...,-100\)
\(\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+...+\frac{1}{x^2+199x+9900}=\frac{25}{51}\)
\(\Leftrightarrow\frac{1}{x\left(x+1\right)}+\frac{1}{x^2+x+2x+2}+...+\frac{1}{x^2+99x+100x+9900}=\frac{25}{51}\)
\(\Leftrightarrow\frac{1}{x\left(x+1\right)}+\frac{1}{x\left(x+1\right)+2\left(x+1\right)}+....+\frac{1}{x\left(x+99\right)+100\left(x+99\right)}=\frac{25}{51}\)
\(\Leftrightarrow\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+99\right)\left(x+100\right)}=\frac{25}{21}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+99}-\frac{1}{x+100}=\frac{25}{21}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+100}=\frac{25}{21}\)
\(\Leftrightarrow\frac{x+100-x}{x\left(x+100\right)}=\frac{25}{21}\)
\(\Leftrightarrow\frac{100}{x\left(x+100\right)}=\frac{25}{21}\)
\(\Leftrightarrow25x^2+2500x=2100\)
\(\Leftrightarrow x^2+100x-84=0\)
\(\Leftrightarrow x^2+2.x.50+50^2-50^2-84=0\)
\(\Leftrightarrow\left(x+50\right)^2-2584=0\)
\(\Leftrightarrow\left(x+50-2\sqrt{646}\right)\left(x+50+2\sqrt{646}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-50+2\sqrt{646}\\x=-50-2\sqrt{646}\end{cases}}\)
Vậy ...
ĐKXĐ \(x\ne0\)
\(x+\frac{1}{x}=x^2+\frac{1}{x^2}\)
=> \(x^2-x=\frac{1}{x}-\frac{1}{x^2}\)
=> \(\frac{x^2-x}{1}=\frac{x^2-x}{x^3}\)
TH1 : x2 - x = 0
=> x(x - 1) = 0
=> \(\orbr{\begin{cases}x=0\left(\text{loại}\right)\\x=1\end{cases}}\Rightarrow x=1\)
TH2 : x2 - x \(\ne0\)
=> x3 = 1
=> x = 1
Vậy x = 1 là nghiệm của phương trình