\(x^4+10x^3+26x^2+1=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 9 2019

\(x^4+10x^3+25x^2+x^2+1=0\)

\(\Leftrightarrow\left(x^2+5x\right)^2+x^2+1=0\)

Do \(\left(x^2+5x\right)^2+x^2+1>0\) \(\forall x\)

\(\Rightarrow\) Phương trình vô nghiệm

8 tháng 2 2019

x4+10x3+26x2+10x+1=0x4+10x3+26x2+10x+1=0

⇔x4+6x3+x2+4x3+24x2+4x+x2+6x+1=0⇔x4+6x3+x2+4x3+24x2+4x+x2+6x+1=0

⇔x2(x2+6x+1)+4x(x2+6x+1)+(x2+6x+1)=0⇔x2(x2+6x+1)+4x(x2+6x+1)+(x2+6x+1)=0

⇔(x2+4x+1)(x2+6x+1)=0⇔(x2+4x+1)(x2+6x+1)=0

⇔(x2+4x+4−3)(x3+6x+9−8)=0⇔(x2+4x+4−3)(x3+6x+9−8)=0

⇔[(x+2)2−3][(x+3)2−8]=0⇔[(x+2)2−3][(x+3)2−8]=0

⇒[(x+2)2−3=0(x+3)2−8=0⇒[(x+2)2−3=0(x+3)2−8=0⇒[(x+2)2=3(x+3)2=8⇒[(x+2)2=3(x+3)2=8⇒⎡⎣⎢⎢⎢x=−4±12−−√2x=−6±32−−√2

8 tháng 2 2019

Thử phân tích VT thành: \(\left(x^2+6x+1\right)\left(x^2+4x+1\right)=0\) xem sao?

9 tháng 1 2018

x 410x3+26x210x+1=0

⇔x2(x2-10x +26 -\(\dfrac{10}{x}+\dfrac{1}{x^2}\))=0

⇔x2-10x+26-\(\dfrac{10}{x}+\dfrac{1}{x^2}=0\)

\(\left(-10x-\dfrac{10}{x}\right)+\left(x^2+\dfrac{1}{x^2}\right)+26=0\)

\(-10\left(x+\dfrac{1}{x}\right)+\left(x^2+\dfrac{1}{x^2}\right)+26=0\)

đặt \(t=\left(x+\dfrac{1}{x}\right)\) thì \(\left(x^2+\dfrac{1}{x^2}\right)=t-2\)

ta có

-10t +t2-2+26=0

=>t2-10t+24=0

=>t2-4t-6t+24=0

=>(t2-4t)-(6t-24)=0

=>t(t-4)-6(t-4)=0

=>(t-4)(t-6)=0

=>t=4 và t=6

* với t=4 thì

\(x+\dfrac{1}{x}=4\Rightarrow x^2-4x+1=0\)(vô nghiệm)

* với t=6 thì

\(x+\dfrac{1}{x}=6\Rightarrow x^2-6x+1=0\) (vô no)

vậy S=∅

9 tháng 1 2018

x 410x3+26x210x+1 =0 à

mk là theo

x 410x3+26x210x+1=0 nha

26 tháng 4 2017

\(x^4+10x^3+26x^2+10x+1=0\)

\(\Leftrightarrow x^4+6x^3+x^2+4x^3+24x^2+4x+x^2+6x+1=0\)

\(\Leftrightarrow x^2\left(x^2+6x+1\right)+4x\left(x^2+6x+1\right)+\left(x^2+6x+1\right)=0\)

\(\Leftrightarrow\left(x^2+4x+1\right)\left(x^2+6x+1\right)=0\)

\(\Leftrightarrow\left(x^2+4x+4-3\right)\left(x^3+6x+9-8\right)=0\)

\(\Leftrightarrow\left[\left(x+2\right)^2-3\right]\left[\left(x+3\right)^2-8\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(x+2\right)^2-3=0\\\left(x+3\right)^2-8=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\left(x+2\right)^2=3\\\left(x+3\right)^2=8\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-4\pm\sqrt{12}}{2}\\x=\dfrac{-6\pm\sqrt{32}}{2}\end{matrix}\right.\)

24 tháng 9 2019

bạn ơi, có mẹo gì không ??

3 tháng 4 2018

a) \(|2x+1|=|x-3|\)

\(\Leftrightarrow|2x+1|-|x-3|=0\)

Lập bảng xét dấu :

x \(\frac{-1}{2}\) 3 
2x+1-0+\(|\)+
x-3-\(|\)-0+

Nếu \(x< \frac{-1}{2}\) thì \(|2x+1|=-2x-1\)

                                    \(|x-3|=3-x\)

\(pt\Leftrightarrow\left(-2x-1\right)-\left(3-x\right)=0\)

\(\Leftrightarrow-2x-1-3+x=0\)

\(\Leftrightarrow-x=4\)

\(\Leftrightarrow x=-4\left(tm\right)\)

Nếu  \(\frac{-1}{2}\le x\le3\) thì \(|2x+1|=2x+1\)

                                               \(|x-3|=3-x\)

\(pt\Leftrightarrow\left(2x+1\right)-\left(3-x\right)=0\)

\(\Leftrightarrow2x+1-3+x=0\)

\(\Leftrightarrow3x-2=0\)

\(x=\frac{2}{3}\left(tm\right)\)

Nếu  \(x>3\) thì \(|2x+1|=2x+1\) 

                               \(|x-3|=x-3\)

\(pt\Leftrightarrow\left(2x+1\right)-\left(x-3\right)=0\)

\(\Leftrightarrow2x+1-x+3=0\)

\(\Leftrightarrow x=-4\) ( loại )

3 tháng 4 2018

\(x^4+x^2+6x-8=0\)

\(\Leftrightarrow\left(x^4+2x^2+1\right)-\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)^2-\left(x-3\right)^2=0\)

Mà \(\left(x^2+1\right)^2\ge0\forall x\)

      \(\left(x-3\right)^2\ge0\forall x\)

Dấu bằng xảy ra khi :

\(\hept{\begin{cases}x^2+1=0\\x-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=-1\\x=3\end{cases}}\)

Lại có \(x^2\ge0\forall x\)

\(\Leftrightarrow x^2=-1\) ( vô lí )

Vậy phương trình có tập nghiệm \(S=\left\{3\right\}\)

17 tháng 6 2019

\(x^4+2x^3+7x^2+26x+37=\left(x^4+2x^3+2x^2+2x+x^2+1\right)+\left(4x^2+24x+36\right)\)

\(=\left(x^2+x+1\right)^2+4\left(x+3\right)^2\)

Đặt: \(x^2+x+1=A;x+3=B\)

\(A\left(A^2+4.B^2\right)=5B^3\Leftrightarrow\left(A^3+5A.B^2\right)-\left(A.B^2+5B^3\right)=0\)

\(\Leftrightarrow\left(A-B^2\right)\left(A^2+5B^2\right)=0\). Em làm tiếp nhé!

26 tháng 3 2020

Vẫn chưa hiểu phân tích của cô Chi)):

Ta có: \(x^4+2x^3+7x^2+26x+37=\left(x^4+2x^3+2x^2+x^2+2x+1\right)\)

\(+\left(4x^2+24x+36\right)=\left(x^2+x+1\right)^2+4\left(x+3\right)^2\)

Đặt \(x^2+x+1=u;x+3=v\)

Phương trình trở thành \(u\left(u^2+4v^2\right)=5v^3\)

\(\Leftrightarrow u^3+4uv^2=5v^3\)

\(\Leftrightarrow\left(u^3-v^3\right)+\left(4uv^2-4v^3\right)=0\)

\(\Leftrightarrow\left(u-v\right)\left(u^2+uv+v^2\right)+4v^2\left(u-v\right)=0\)

\(\Leftrightarrow\left(u-v\right)\left(u^2+uv+5v^2\right)=0\)

+) \(u-v=0\Rightarrow u=v\)

\(\Rightarrow x^2+x+1=x+3\Leftrightarrow x^2-2=0\Leftrightarrow x=\pm\sqrt{2}\)

+) \(u^2+uv+5v^2=0\)(vô nghiệm)

Vậy \(x=\pm\sqrt{2}\)

27 tháng 7 2020

\(x^4-10x^2-x+20=0\)

Đặt : \(x^2=t\left(t\ge0\right)\)

\(\Leftrightarrow t^2-10t-\sqrt{t}+20=0\)

\(\Leftrightarrow-\sqrt{t}=-t^2+10t-20\)

\(\Leftrightarrow t-\left(-t^2+10t-20\right)^2=0\)