\(\sqrt{x^2-x+1}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2016

Giải các phương trình và hệ phương trình:

a) x2 - \(2\sqrt{5}\)x + 5 = 0

Ta có: x2 - \(2\sqrt{5}\)x + 5 = 0 <=> ( x = \(\sqrt{5}\) )2 = 0 <=> x - \(\sqrt{5}\) = 0 <=> x = \(\sqrt{5}\)

Vậy phương trình đã cho có tập nghiệm S = ( \(\sqrt{5}\) )

24 tháng 7 2016

c) \(\begin{cases}2x+5y=-1\\3x-2y=8\end{cases}\) <=> \(\begin{cases}6x+15y=-3\\6x-4y=16\end{cases}\) <=> \(\begin{cases}19y=-19\\3x-2y=8\end{cases}\) <=> \(\begin{cases}y=-1\\3x-2.\left(-1\right)=8\end{cases}\) <=> \(\begin{cases}y=-1\\x=2\end{cases}\)

Vậy hệ phương trình có 1 nghiệm duy nhất (x ; y) = (2 ; -1)

26 tháng 2 2020

a)Đặt \(\sqrt[3]{2x-1}=a\Rightarrow a^3+1=2x\left(1\right)\)

Phương trình trở thành: \(x^3+1=2a\left(2\right)\)

Trừ theo vế (1) và (2):

a3-x3=2(x-a)<=>(a-x)(a2+ax+x2+2)=0<=>a=x

\(\Leftrightarrow x=\sqrt[3]{2x-1}\Leftrightarrow x^3-2x+1=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{-1-\sqrt{5}}{2}\\x=\frac{-1+\sqrt{5}}{2}\end{matrix}\right.\)Vậy phương trình có tập nghiệm S=\(\left\{1;\frac{-1+\sqrt{5}}{2};\frac{-1-\sqrt{5}}{2}\right\}\)

26 tháng 2 2020

b)ĐKXĐ:\(x\in R\)

pt\(\Leftrightarrow\left\{{}\begin{matrix}x^2-3x+1\le0\\\left(x^2-3x+1\right)^2=\frac{1}{3}\left(x^4+4x^2+1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{3-\sqrt{5}}{2}\le x\le\frac{3+\sqrt{5}}{2}\\2x^4-18x^3+29x^2-18x+2=0\left(1\right)\end{matrix}\right.\)

Xét x=0 ko là nghiệm của pt(loại)

x khác 0.Khi đó ta chia cả hai vế của (1) cho x2 ta có:\(2x^2-18x+29-\frac{18}{x}+\frac{2}{x^2}=0\Leftrightarrow2\left(x+\frac{1}{x}\right)^2-4-18\left(x+\frac{1}{x}\right)+29=0\Leftrightarrow2\left(x+\frac{1}{x}\right)^2-18\left(x+\frac{1}{x}\right)+25=0\)

Khi đó ta sẽ tìm được các nghiệm của pt

19 tháng 12 2015

a) Cả hai phương trình đều có chung \(\sqrt{x+3}\)

pt đầu suy ra  \(\sqrt{x+3}=2\sqrt{y-1}\)

pt sau suy ra \(\sqrt{x+3}=4-\sqrt{y+1}\)

Vậy \(2\sqrt{y-1}=4-\sqrt{y+1}\), đk y > 1

\(4\left(y-1\right)=16-8\sqrt{y+1}+y+1\)

\(8\sqrt{y+1}+3y-21=0\)

Đặt \(\sqrt{y+1}=t\)

=> y = t2 - 1

=> 8t + 3(t2 -1) -21 =0

3t2 + 8t - 24 = 0

=> t = ...

=> y = t2 - 1

=> \(\sqrt{x+3}=2\sqrt{y-1}\)

=> x =...

b) Trừ hai pt cho nhau ta có:

x2 - y2 = 3(y - x)

(x - y) (x + y + 3) = 0

=> x = y hoặc x + y + 3 = 0

Xét hai trường hợp, rút x theo y rồi thay trở lại một trong hai pt ban đầu tìm ra nghiệm