Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
-x^3 -5x^2 + 4x +4
=> x1 =-5.5877............
x2=1.1895.............
x3=-0.6018............
\(x^2+3x+3+x^2-x-1-2x^2+2x+1=1\)
\(\Leftrightarrow4x+2=0\Leftrightarrow x=-\dfrac{1}{2}\)
1) \(x^4-6x^3-x^2+54x-72=0\)
\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
Tự làm nốt...
2) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Tự làm nốt...
\(x^4-2x^3-6x^2+8x+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
...
\(2x^4-13x^3+20x^2-3x-2=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)
Bí
\(\left(x-1\right)^3+x^3+\left(x+1\right)^3=\left(x+2\right)^3\)
\(\Leftrightarrow\)\(x^3-3x^2+3x-1+x^3+x^3+3x^2+3x+1=x^3+6x^2+12x+8\)
\(\Leftrightarrow\)\(3x^3+6x=x^3+6x^2+12x+8\)
\(\Leftrightarrow\)\(2x^3-6x^2-6x-8=0\)
\(\Leftrightarrow\)\(x^3-3x^2-3x-4=0\)
\(\Leftrightarrow\)\(x^3-4x^2+x^2-4x+x-4=0\)
\(\Leftrightarrow\)\(\left(x-4\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\)\(x-4=0\) (vì x2 + x + 1 = (x + 0,5)2 + 0,75 > 0)
\(\Leftrightarrow\)\(x=4\)
Vậy...
(x2+x+1)2=3(x4+x2+1)
<=>x4+x2+1+2x3+2x2+2x=3x4+3x2+3
<=>x4+2x3+3x2+2x+1=3x4+3x2+3
<=>2x4-2x3-2x+2=0
<=>2x3.(x-1)-2.(x-1)=0
<=>2.(x-1)(x3-1)=0
<=>2.(x-1)(x-1)(x2+x+1)=0
<=>2.(x-1)2.(x2+x+1)=0
<=>x-1=0 ( vì x2+x+1=(x+1/2)2+3/4 >0))
<=>x=1
<=> x4+x2+1+2x3+2x2+2x=3x4+3x23
<=> 2x3+2x=2x4+2
<=> -2x4+2x3+2x-2=0
<=> -2x3(x-1) +2(x-1)=0
<=> (-2)(x-1)(x3-1)=0
<=> (-2)(x-1)2(x2+2x+1)
<=> (-2)(x-1)2((x+1/2)2+3/4)
<=> x-1=0
<=> x=0
x-3/x+1=x^2/x^2-1
x-3/x+1=x^2/(x-1)(x+1)
(x-3)(x-1)/(x+1)(x-1)=x^2/(x-1)(x+1)
=>(x-3)(x-1)=x^2
x^2-x-3x+3=x^2
x^2-x^2-x-3x=-3
-4x=-3
x=3/4