\(x^3-4x+5=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

x^3 -4*x+5 = 0

x=-24567/10000; x = -((căn bậc hai(419)-5*3^(3/2))^(2/3)*(căn bậc hai(3)*i+1)-2^(8/3)*căn bậc hai(3)*i+2^(8/3))/(2^(4/3)*căn bậc hai(3)*(căn bậc hai(419)-5*3^(3/2))^(1/3));x = ((căn bậc hai(419)-5*3^(3/2))^(2/3)*(căn bậc hai(3)*i-1)-2^(8/3)*căn bậc hai(3)*i-2^(8/3))/(2^(4/3)*căn bậc hai(3)*(căn bậc hai(419)-5*3^(3/2))^(1/3));

Mình chỉ làm đc có nhiêu đây thôi

bn k cho mình nhoa 

14 tháng 8 2020

x3- 4x + 5 = x3 + x2 -x2 +4x -5

=x2(x+1) - (x2 -4x +5)

ta có  x2 -4x +5 = x-5x +x-5 = x(x-5) + (x-5) = (x+1)(x-5)

thay vào pt ta dc   x2(x+1) - (x+1)(x-5)  = (x+1)(x2 -x +5)  =0

với x+1 =0 thì x=1

x2 -x +5 = x2 - x +\(\frac{1}{4}\) +\(\frac{19}{4}\) = (x-\(\frac{1}{2}\))2 +\(\frac{19}{4}\)>0.

vậy S=(1)

25 tháng 4 2017

tui giải câu a thôi nha

chia phương trình cho \(x^2\)ta có:

\(x^2+3x+4+\frac{3}{x}+\frac{1}{x^2}\)=0

\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)+3\left(x+\frac{1}{x}\right)+4\)=0

đặt \(x+\frac{1}{x}=a\Rightarrow x^2+\frac{1}{x^2}=a^2-2\)\(\Rightarrow a^2-2+3a+4=0\)\(\Leftrightarrow a^2+3a+2=0\)

\(\Leftrightarrow a^2+a+2a+2=0\Leftrightarrow\left(a+1\right)\left(a+2\right)=0\)

\(\Leftrightarrow a+1=0\)hoặc\(a+2=0\)

*a+1=0\(\Rightarrow a=-1\Rightarrow x+\frac{1}{x}=1\Rightarrow x+\frac{1}{x}-1=0\)\(\Leftrightarrow\frac{x^2-x+1}{x}=0\Leftrightarrow x^2-x+1=0\)

\(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)\(\Rightarrow\)loại

*a+2=0\(\Rightarrow a=-2\Rightarrow x+\frac{1}{x}=-2\Rightarrow x+\frac{1}{x}+2=0\)\(\Leftrightarrow\frac{x^2+2x+1}{x}=0\Leftrightarrow\frac{\left(x+1\right)^2}{x}=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)

Vậy phương trình có nghiệm x=-1

24 tháng 4 2019

a, \(2x\left(x-3\right)+5\left(x-3\right)=0\)

\(\Leftrightarrow\left(2x+5\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\Rightarrow2x=-5\Rightarrow x=\frac{-5}{2}\\x-3=0\Rightarrow x=3\end{cases}}\)

Vậy \(S=\left\{-\frac{5}{2};3\right\}\)

T**k mik nhé!

Hok tốt!

24 tháng 4 2019

b,\(x\left(2x-7\right)-4x+14=0\)

\(\Leftrightarrow x\left(2x-7\right)-2\left(2x-7\right)=0\)

\(\Leftrightarrow\left(2x-7\right)\left(x-2\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}2x-7=0\Rightarrow2x=7\Rightarrow x=\frac{7}{2}\\x-2=0\Rightarrow x=2\end{cases}}\)

Vậy \(S=\left\{\frac{7}{2};2\right\}\)

T**k mik nhé!

Hok tốt!

4 tháng 3 2020

(x2 + x  + 1)(6 - 2x) = 0

<=> 6 - 2x = 0 (do x2 + x + 1 > 0)

<=> 2x = 6

<=> x = 3

Vậy S = {3}

(8x - 4)(x2 + 2x + 2) = 0

<=> 8x - 4 = 0 (vì x2 + 2x + 2 > 0)

<=> 8x = 4

<=> x = 1/2 

Vậy S  = {1/2}

x3 - 7x + 6 = 0

<=> x3 - x - 6x + 6 = 0

<=> x(x2 - 1) - 6(x - 1) = 0

<=> x(x - 1)(x + 1) - 6(x - 1) = 0

<=> (x2 + x - 6)(x - 1) = 0

<=> (x2 + 3x - 2x - 6)(x - 1) = 0

<=> (x + 3)(x - 2)(x - 1) = 0

<=> x + 3 = 0

hoặc x - 2 = 0

hoặc x  - 1 = 0

<=> x = -3

hoặc x = 2

hoặc x = 1

Vậy S = {-3; 1; 2}

x5 - 5x3 + 4x = 0

<=> x(x4 - 5x2 + 4) = 0

<=> x(x4 - x2 - 4x2 + 4) = 0

<=> x[x2(x2 - 1) - 4(x2 - 1)] = 0

<=> x(x - 2)(x + 2)(x - 1)(x + 1) = 0

<=> x = 0 hoặc x - 2 = 0 hoặc x + 2 = 0 hoặc x - 1 = 0 hoặc x  + 1 = 0

<=> x = 0 hoặc x = 2 hoặc x = -2 hoặc x = 1 hoặc x = -1

Vậy S = {-2; -1; 0; 1; 2}

4 tháng 3 2020

+ Ta có: \(\left(x^2+x+1\right).\left(6-2x\right)=0\)

 - Ta lại có: \(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

- Vì \(x^2+x+1>0\forall x\)mà \(\left(x^2+x+1\right).\left(6-2x\right)=0\)

  \(\Rightarrow6-2x=0\Leftrightarrow-2x=-6\Leftrightarrow x=3\left(TM\right)\)

Vậy \(S=\left\{3\right\}\)

+ Ta có: \(\left(8x-4\right).\left(x^2+2x+2\right)=0\)

 - Ta lại có: \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1>0\forall x\)

 - Vì \(x^2+2x+2>0\forall x\)mà \(\left(8x-4\right).\left(x^2+2x+2\right)=0\)

   \(\Rightarrow8x-4=0\Leftrightarrow8x=4\Leftrightarrow x=\frac{1}{2}\left(TM\right)\)

Vậy \(S=\left\{\frac{1}{2}\right\}\)

+ Ta có: \(x^3-7x+6=0\)

       \(\Leftrightarrow\left(x^3-x^2\right)+\left(x^2-x\right)+\left(6x-6\right)=0\)

       \(\Leftrightarrow x^2.\left(x-1\right)+x.\left(x-1\right)-6.\left(x-1\right)=0\)

       \(\Leftrightarrow\left(x-1\right).\left(x^2+x-6\right)=0\)

       \(\Leftrightarrow\left(x-1\right).\left[\left(x^2-2x\right)+\left(3x-6\right)\right]=0\) 

       \(\Leftrightarrow\left(x-1\right).\left[x.\left(x-2\right)+3.\left(x-2\right)\right]=0\)

       \(\Leftrightarrow\left(x-1\right).\left(x-2\right).\left(x+3\right)=0\)

       \(\Leftrightarrow x=1\left(TM\right)\)hoặc \(x=2\left(TM\right)\)hoặc \(x=-3\left(TM\right)\)

 Vậy \(S=\left\{-3;1;2\right\}\)

 + Ta có: \(x^5-5x^3+4x=0\)

        \(\Leftrightarrow x.\left(x^4-5x^2+4\right)=0\)

       \(\Leftrightarrow x.\left[\left(x^4-x^2\right)-\left(4x^2-4\right)\right]=0\)

       \(\Leftrightarrow x.\left[x^2.\left(x^2-1\right)-4.\left(x^2-1\right)\right]=0\)

       \(\Leftrightarrow x.\left(x^2-1\right).\left(x^2-4\right)=0\)

       \(\Leftrightarrow x=0\left(TM\right)\)

hoặc  \(x^2-1=0\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\left(TM\right)\)

hoặc \(x^2-4=0\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\left(TM\right)\)

Vậy \(S=\left\{-2;-1;0;1;2\right\}\)

!!@@# ^_^ Chúc bạn hok tốt ^_^#@@!!      

Hướng dẫn giải:

a) 4x - 20 = 0 <=> 4x = 20 <=> x = 5

Vậy phương trình có nghiệm duy nhất x = 5.

b) 2x + x + 12 = 0 <=> 2x + 12 = 0

<=> 3x = -12 <=> x = -4

Vậy phương trình đã cho có nghiệm duy nhất x = -4

c) x - 5 = 3 - x <=> x + x = 5 + 3

<=> 2x = 8 <=> x = 4

Vậy phương trình có nghiệm duy nhất x = 4

d) 7 - 3x = 9 - x <=> 7 - 9 = 3x - x

<=> -2 = 2x <=> x = -1

Vậy phương trình có nghiệm duy nhất x = -1.

21 tháng 4 2017

a.x=5

b x=-4

c.x=4

d.x=-1

11 tháng 2 2018

khó thể xem trên mạng

11 tháng 2 2018

bài 1 câu a bỏ x= nhé !

27 tháng 2 2020

a)<=>\(\left(x^3+x^2-2x\right)+\left(3x^2+3x-6\right)=0\)

<=>\(x\left(x^2+x-2\right)+3\left(x^2+x-2\right)=0\)

<=>\(\left(x^2+x-2\right)\left(x+3\right)=0\)

Phương trình trên bạn tự bấm máy tính nha

<=>\(\left(x-1\right)\left(x+2\right)\left(x+3\right)=0\)

Đến đây tự làm đc rồi

Vậy x=1 hoặc -2 hoặc -3

b)<=>\(\left(x^3-4x^2+4x\right)+\left(x^2-4x+4\right)=0\)

<=>\(x\left(x^2-4x+4\right)+\left(x^2-4x+4\right)=0\)

<=>\(\left(x+1\right)\left(x^2-4x+4\right)=0\)

<=>\(\left(x+1\right)\left(x-2\right)^2=0\)

<=>\(\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)

c)Câu c mik chưa làm đc

27 tháng 2 2020

Đáp án câu C:

\(x^3-4x^2+5x=0\)

\(\Leftrightarrow x\left(x^2-4x^2+5x\right)=0\)

\(Tacó:x^2-4x+5=x^2-4x+2^2+1\)

                                       \(=\left(x-2\right)^2+1\)

       \(Mà\left(x-2\right)^2\ge0\)

       \(Nên\left(x-2\right)^2+1\ge1\)

\(Khiđó:x\left(x^2-4x+5\right)=0\)

        \(\Leftrightarrow x=0\)

26 tháng 2 2019

c) (x+1)(x+2)(x+4)(x+5)=40

<=> (x+1)(x+5)(x+2)(x+4)=40

<=>(x^2+6x+5)(x^2+6x+8)=40

Đặt x^2+6x+5=y

=>y(y+3)=40

=>y^2+3y=40<=>y^2+2.\(\frac{3}{2}\)y+\(\frac{9}{4}\)=40+\(\frac{9}{4}\)<=> (y+\(\frac{3}{2}\))2=42,25<=> y+\(\frac{3}{2}\)=6,5 hoặc -6,5

Bạn tự làm tiếp nha :333

23 tháng 11 2019

a)x- 4x- 19x+106x - 120 = 0

=>x4 -2x3 -2x3+4x2 -23x2 +46x +60x - 120 = 0

=>x3(x-2) -2x2(x-2) -23x(x-2) +60(x-2)= 0

=>(x3- 2x2 -23x+ 60)(x-2) =0

=>(x3 - 3x2 +x2 -3x -20x+60)(x -2) = 0

=>(x+x -20)(x-3)(x-2) = 0

=>(x2 -4x +5x -20)(x-3)(x-2) = 0

=>(x+5)(x-4)(x-3)(x-2) =0

=>x= -5; 4; 3; 2

b)=>4x4 -4x3 +16x3 -16x2 +21x2 -21x +15x -15= 0

=>(x-1)(4x3 +16x2 +21x+15)= 0

=>...bạn tự làm phần tiếp theo nhé

c)Làm giống nguyễn thị ngọc linh

19 tháng 7 2019

a) \(1-\frac{2x+3}{7}=0\)

=> \(\frac{7-2x-3}{7}=0\)

=> \(\frac{4-2x}{7}=0\)

=> 4 - 2x = 0

=> 2x = 4

=> x = 4 : 2 = 2

19 tháng 7 2019

a) \(1-\frac{2x+3}{7}=0\)

\(\Leftrightarrow\frac{7}{7}-\frac{2x-3}{7}=0\)

\(\Leftrightarrow\frac{7-2x+3}{7}=0\)

\(\Leftrightarrow7-2x+3=0\)

\(\Leftrightarrow-2x+10=0\)

\(\Leftrightarrow-2\left(x-10\right)=0\)

\(\Leftrightarrow x-10=0\)

\(\Leftrightarrow x=10\)