Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-12x-16=0\Leftrightarrow x^2\left(x+2\right)-2x\left(x+2\right)-8\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-2x-8\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[x\left(x-4\right)+2\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)^2\left(x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2\\x=4\end{cases}}\)
a, x^2 - x - 20 = 0
=> x^2 - 5x + 4x - 20 = 0
=> x(x - 5) + 4(x - 5) = 0
=> (x + 4)(x - 5) = 0
=> x + 4 = 0 hoặc x - 5 = 0
=> x = -4 hoặc x = 5
b, x^3 - 6x^2 + 12x + 19 = 0
=> x^3 + x^2 - 7x^2 - 7x + 19x + 19 = 0
=> x^2(x + 1) - 7x(x + 1) + 19(x + 1) = 0
=> (x^2 - 7x + 19)(x + 1) = 0
x^2 - 7x + 19 > 0
=> x + 1 = 0
=> x = -1
\(a,x^2-x-20=0\)
\(x^2-5x+4x-20=0\)
\(\left(x-5\right)\left(x-4\right)=0\)
\(\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=4\end{cases}}}\)
\(b,x^3-6x^2+12x+19=0\)
\(\left(x^3+x^2\right)-\left(7x^2+7x\right)+\left(19x+19\right)=0\)
\(\left(x+1\right)\left(x^2-7x+19\right)=0\)
Vì \(\left(x^2-7x+19\right)>0\forall x\)
\(x+1=0\)
\(x=-1\)
Ta thấy x = 0 ko phải là nghiệm của pt => x khác 0
Chia cả 2 vế của pt cho x^2 ta được :
x^2+5x-12+5/x+1/x^2 = 0
<=> (x^2+1/x^2)+5.(x+1/x) - 12 = 0
Đặt x+1/x = a => x^2+1/x^2 = a^2-2
pt trở thành :
a^2-2+5a-12 = 0
<=> a^2+5a-14 = 0
<=> (a^2-2a)+(7a-14) = 0
<=> (a-2).(a+7) = 0
<=> a=2 hoặc a=-7
<=> x+1/x = 2 hoặc x+1/x = -7
Đến đó bạn tự nhân x vào 2 vế rùi chuyển sang mà giải nha
Tk mk nha
x^4 + 2x^3 + 5x^2 + 4x-12 = 0
<=> (x^4 - x^3) + (3x^3-3x^2) + (8x^2 - 8x) + (12x-12) = 0
<=> (x-1).(x^3 + 3x^2 + 8x+12) = 0
<=> (x-1).[(x^3+2x^2)+(x^2+2x)+(6x+12)] = 0
<=>(x-1).(x+2).(x^2+x+6) = 0
<=> x= 1 hoặc x = -2
x4 - 4x3 + 12x -9 = 0
<=> x4 - x3 - 3x3 + 3x2 - 3x2 + 3x + 9x - 9 = 0
<=> x3(x-1) - 3x2(x-1) - 3x(x-1) + 9(x-1) = 0
<=> (x-1)(x3 - 3x2 - 3x + 9) = 0
<=> (x-1)[x2(x-3) - 3(x-3)] = 0
<=> (x-1)(x-3)(x2 - 3) = 0
=> x-1 = 0 hoặc x - 3= 0 hoặc x2 - 3 = 0
=> x = 1 hoặc x = 3 hoặc x = \(\pm\sqrt{3}\)
Vậy S = ...
1/
-x^3 -5x^2 + 4x +4
=> x1 =-5.5877............
x2=1.1895.............
x3=-0.6018............
b. sửa đề
\(6x^4+25x^3+12x-25x^2+6=0\)
\(\Leftrightarrow6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)
\(\Leftrightarrow6x^3\left(x+2\right)+13x^2\left(x+2\right)-14x\left(x+2\right)+3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(2x-1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=-3\\x=\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy........
Bài 1 : Giải phương trình
a) (x + 3)4 + (x + 5)4 = 16
Đặt : x + 3 = t
=> x + 5 = x + 3 + 2 = t + 2
Thay x + 3 = t và x + 5 = t + 2 vào phương trình, ta có :
t4 + (t + 2)4 = 16
<=> 2t4 + 8t3 + 24t2 + 32t + 16 = 16
<=> 2(t4 + 4t3 + 12t2 + 16t) = 0
<=> t4 + 4t3 + 12t2 + 16t = 0
<=> (t + 2) . t . (t2 + 2y + 4) = 0
TH1 : t = 0
TH2 : t + 2 = 0 <=> t = -2
TH3 : t2 + 2y + 4 = 0 (vô nghiệm => loại)
Nên t = 0 hoặc t = -2
hay x + 3 = -2 hoặc x + 3 = 0
<=> x = -5 hoặc x = -3
\(S=\left\{-5;-3\right\}\)
b) 6x4 + 25x3 + 12x2 - 25x + 6 = 0
<=> 6x4 + 12x3 + 13x3 + 26x2 - 14x2 - 28x + 3x + 6 = 0
<=> 6x3 (x + 2) + 13x2 (x + 2) - 14x (x + 2) + 3(x + 2) = 0
<=> (x + 2)(6x3 + 13x2 - 14x + 3) = 0
<=> (x + 2)(6x3 + 18x2 - 5x2 - 15x + x + 3) = 0
\(\Leftrightarrow\left(x+2\right)[6x^2\left(x+3\right)-5x\left(x+3\right)+\left(x+3\right)]=0\)
<=> (x + 2)(x + 3) (6x2 - 5x + 1) = 0
<=> (x + 2)(x + 3)(2x - 1)(3x - 1) = 0
TH1 : x + 2 = 0 <=> x = -2
TH2 : x + 3 = 0 <=> x = -3
TH3 : 2x - 1 = 0 <=> 2x = 1 <=> x = \(\dfrac{1}{2}\)
TH4 : 3x - 1 = 0 <=> 3x = 1 <=> 3x = \(\dfrac{1}{3}\)
\(S=\left\{-2;-3;\dfrac{1}{2};\dfrac{1}{3}\right\}\)
a) \(x^4-4x^3+12x-9=0\)
\(\Leftrightarrow x^4-x^3-3x^3+3x^2-3x^2+3x+9x-9=0\)
\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)-3x\left(x-1\right)+9\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2-3x+9\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-3\right)-3\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-3\right)\left(x-3\right)=0\)
\(\Leftrightarrow x-1=0\)hoặc \(x^2-3=0\)hoặc \(x-3=0\)
\(\Leftrightarrow x=1\)hoặc \(x=\pm\sqrt{3}\)hoặc \(x=3\)
Vậy tập nghiệm của phương trình là : \(S=\left\{1;\pm\sqrt{3};3\right\}\)
b) \(x^5-5x^3+4x=0\)
\(\Leftrightarrow x^5-x^3-4x^3+4x=0\)
\(\Leftrightarrow x^3\left(x^2-1\right)-4x\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^3-4x\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow x\left(x^2-4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow x=0\)hoặc \(x=\pm2\)hoặc \(x=\pm1\)
Vậy tập nghiệm của phương trình là : \(S=\left\{0;\pm2;\pm1\right\}\)
c) \(x^4-4x^3+3x^2+4x-4=0\)
\(\Leftrightarrow x^4-x^3-3x^3+3x^2+4x-4=0\)
\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2+4=0\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-2x^2-x^2+4=0\right)\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-2\right)-\left(x-2\right)\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x^2+x+2\right)=0\)
\(\Leftrightarrow x-1=0\)
hoặc \(x^2+x+2=\left(x+\frac{1}{2}^2\right)+\frac{7}{4}=0\left(ktm\right)\)
hoặc \(x-2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;2\right\}\)
mk chỉ làm câu b nha
( x-4)(\(x^2\) +1)=0
=> x -4 = 0 hoạc \(x^2\) +1=0
nếu x-4=0
=> x =4
nếu \(x^2\) +1 =0
=> \(x^2\) = -1 (loại)
vì \(x^2\) luôn > hoặc = 0 với mọi x thuộc R
=> x=4
b) (x-4)(x2+1)=0
=> x-4=0 hoặc x2+1=0
x=0+4 hoặc x2=0-1=-1
x=4 hoặc => x\(\in\phi\)
Vậy x=4
Nguyễn TrươngTruong Viet TruongAkai HarumaMysterious PersonMashiro Shiina
PT<=>x3-12x-16=0<=>x3-64-12x+48=0
<=>(x-4)(x2+4x+16)-12(x-4)=0 <=> (x-4)(x2+4x+4)=0
<=>(x-4)(x+2)2=0<=> \(\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)