
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Lời giải:
Ta có: \(\left\{\begin{matrix} (xy+1)(2y-x)=2x^3y^2\\ x^2y^2+1=2y^2\end{matrix}\right.\Rightarrow (xy+2y^2-x^2y^2)(2y-x)=2x^3y^2\)
\(\Leftrightarrow y[(x+2y-x^2y)(2y-x)-2x^3y]=0\)
Hiển nhiên \(y\neq 0\) , do đó \((x+2y-x^2y)(2y-x)=2x^3y\)
\(\Leftrightarrow -x^2+4y^2-2x^2y^2+x^3y=2x^3y\)
\(\Leftrightarrow -x^2+4y^2=x^3y+2x^2y^2\)
\(\Leftrightarrow (2y+x)(2y-x-x^2y)=0\)
TH1: \(2y+x=0\rightarrow x=-2y\)
Thay vào PT $(2)$ suy ra \(4y^4+1=2y^2\leftrightarrow 3y^4+(y^2-1)^2=0\) (vô nghiệm)
TH2: \(2y-x=x^2y\) thay vào PT $(1)$ suy ra
\((xy+1)x^2y=2x^3y^2\leftrightarrow x^2y(xy+1-2xy)=x^2y(1-xy)=0\)
Vì \(y\neq 0\rightarrow \) \(x=0\) hoặc \(xy=1\)
\(\bullet\) \(x=0\rightarrow \text{PT(1)}\rightarrow y=0 \) (vl)
\(xy=1\)\(\Rightarrow \text{PT(2)}\rightarrow y=\pm 1\rightarrow x=\pm 1\) (thử lại thấy đúng)
Vậy \((x,y)=(-1,-1),(1,1)\)

Nhã Doanh9GP
Phạm Nguyễn Tất Đạt8GP
Akai Haruma7GP
nguyen thi vang5GP
Nguyễn Thị Ngọc Thơ5GP
kuroba kaito4GP
Mashiro Shiina4GP
Nguyễn Phạm Thanh Nga4GP
lê thị hương giang3GP
Aki Tsuki3GP

Ta có
\(2xy^2+x+y+1-x^2-2y^2-xy=0\)
<=>\(\left(2xy^2-2y^2\right)+\left(y-xy\right)+\left(x-x^2\right)=-1\)
<=>\(2y^2\left(x-1\right)-y\left(x-1\right)-x\left(x-1\right)=-1\)
<=>\(\left(2y^2-y-x\right)\left(x-1\right)=-1\)
đến đây tự giải tiếp nha lắc
Tick nha

Câu hỏi của Fire Sky - Toán lớp 8 - Học toán với OnlineMath Em tham khảo tại link này nhé!

bài 1 câu b dẽ nhất
x^2 =y^4 +8
x^2 -y^4 =8
x^2 -(y^2)^2 =8
hiệu hai số cp =8
=> x =+-3 và y =+-1