
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HT
1

Các câu hỏi dưới đây có thể giống với câu hỏi trên

1 tháng 9 2019
\(a,x^2+y^2-x-y=8\)
\(\Rightarrow x^2-x+\frac{1}{4}+y^2-y+\frac{1}{4}-8,5=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2-8,5=0\)
Ta có : \(\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2-8,5\ge-8,5\forall x;y\)
Để VP=0 và là các số nguyên
=>\(\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=8,5\)
1 tháng 9 2019
a/ x^2 + y^2 - x - y = 8
<=> 4x^2 + 4y^2 - 4x - 4y = 32
<=> (2x - 1)^2 + (2y - 1)^2 = 34
<=> (2x - 1)^2 = 9 và (2y - 1)^2 = 25
Hoặc (2x - 1)^2 = 25 và (2y - 1)^2 = 9
bạn tham khảo tại đây : Giải pt nghiệm nguyên: $x^2+y^2+xy=x^2y^2$ - Số học - Diễn đàn Toán học