\(X^2+\sqrt{x^2-2x-19}=2x+39\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2017

đánh giá đi bạn 

20 tháng 5 2017

\(\frac{6}{-x^2+10x-24}=\frac{6}{1-\left(x-5\right)^2}\ge6\)

14 tháng 2 2018

Thắng Chó Râm tặc

29 tháng 7 2017

Ta có:

\(VT=\sqrt{3x^2-6x+19}+\sqrt{x^2-2x+26}\)

\(=\sqrt{3\left(x-1\right)^2+16}+\sqrt{\left(x-1\right)^2+25}\ge4+5=9\)

\(VP=8-x^2+2x=9-\left(x-1\right)^2\le9\)

Dấu = xảy ra khi \(x=1\)

nếu vế phải là \(2\sqrt{2}\)thì làm như này: 

Ta có: \(\sqrt{x-\sqrt{2x-1}}+\sqrt{x+\sqrt{2x-1}}=2\sqrt{2}\)

\(\Leftrightarrow2x+2\sqrt{x^2-2x+1}=8\) (bình phương cả 2 vế rùi khai triển dựa trên hằng đẳng thức)

\(\Leftrightarrow2x+2x-2=8\Leftrightarrow4x=10\Leftrightarrow x=\frac{2}{5}\)

7 tháng 5 2020

x-1 + x-3 =1 <=> 2x -4=1 tu giai not

24 tháng 12 2017

ta có Pt <=> \(\sqrt{\left(x+1\right)^2+1}+\sqrt{\left(x-1\right)^2+4}=\sqrt{13}\)

\(\Leftrightarrow\sqrt{\left(x+1\right)^2+1}+\sqrt{\left(1-x\right)^2+2^2}=\sqrt{13}\)

Áp dụng bđt min-côp-xki, ta có

\(\sqrt{\left(x+1\right)^2+1}+\sqrt{\left(1-x\right)^2+2^2}\ge\sqrt{\left(x+1+1-x\right)^2+\left(1+2\right)^2}\)

\(\Rightarrow VT\ge\sqrt{4+9}=\sqrt{13}\)

dấu = xảy ra <=> x=-1/3