\(x^2+8\sqrt{x+2}=14-3x\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2016

ĐK: x\(\ge\)2

\(\Leftrightarrow x^2+4x+4=x+2-8\sqrt{x+2}+16\)

<=>\(\left(x+2\right)^2=\left(\sqrt{x+2}-4\right)^2\)

<=>\(x+2=\sqrt{x+2}-4\text{ hoặc }x+2=4-\sqrt{x+2}\)

\(\Leftrightarrow x+6=\sqrt{x+2}\text{ hoặc }\sqrt{x+2}=2-x\)

Tự túc là hạnh phúc :D

22 tháng 8 2017

bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

22 tháng 8 2017

bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

7 tháng 7 2017

a,bạn viết thiếu đầu bài

b,<=>3x-2=4

<=>3x=6

<=>x=2

vậy...........................

c,=>\(5\left(2\sqrt{x}-19\right)=4-\sqrt{x}\)ĐKXĐ x>=0 x khác 16

<=>\(10\sqrt{x}-95-4+\sqrt{x}=0\)

<=>\(11\sqrt{x}-99=0\)

<=>\(11\sqrt{x}=99\)

<=>\(\sqrt{x}=9< =>x=81\)

vậy.............

k mk nha

7 tháng 7 2017

#quynh tong ngoc ơi, câu a đề bài là vậy rồi nhé >< Mình viết đúng đấy bạn ạ

a) giải pt ra ta được  : x=-1

b) giải pt ra ta được  : x=2

c)giải pt ra ta được  : x vô ngiệm

d)giải pt ra ta được  : x=vô ngiệm

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

26 tháng 7 2017

a/ \(\hept{\begin{cases}VT=\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\ge2+3=5\\VP=4-2x-x^2=5-\left(x+1\right)^2\le5\end{cases}}\)

Dấu = xảy ra khi \(x=-1\)

b/ \(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\)

Đặt \(\hept{\begin{cases}\sqrt{x-2}=a\ge0\\\sqrt{4-x}=b\ge0\end{cases}}\)thì ta có

\(\hept{\begin{cases}a^2+b^2=2\\a+b=-a^2b^2+3\end{cases}}\)

Đặt \(\hept{\begin{cases}a+b=S\\ab=P\end{cases}}\) thì ta có

\(\hept{\begin{cases}S^2-2P=2\\S=3-P^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(3-P^2\right)^2-2P=2\\S=3-P^2\end{cases}}\)

Thôi làm tiếp đi làm biếng quá.

26 tháng 7 2017

a)3x2+6x+7+5x2+10x+14=42xx2

\(\Leftrightarrow16x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}+21\)

\(\Leftrightarrow-x^2-2x+4\)

  Thế vào ta được:

\(x^2+18x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}=-17\)

\(x^2+18x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}+17=0\)

\(16x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}+21=4-x\left(x+2\right)\)

5 tháng 7 2017

b)\(\sqrt{4x-8}+2\sqrt{9x-18}-\sqrt{x-2}=14\)

Đk:\(x\ge2\)

\(pt\Leftrightarrow\sqrt{4x-8}-4+2\sqrt{9x-18}-12-\left(\sqrt{x-2}-2\right)=0\)

\(\Leftrightarrow\frac{4x-8-16}{\sqrt{4x-8}+4}+\frac{4\left(9x-18\right)-144}{2\sqrt{9x-18}+12}-\frac{x-2-4}{\sqrt{x-2}+2}=0\)

\(\Leftrightarrow\frac{4\left(x-6\right)}{\sqrt{4x-8}+4}+\frac{36\left(x-6\right)}{2\sqrt{9x-18}+12}-\frac{x-6}{\sqrt{x-2}+2}=0\)

\(\Leftrightarrow\left(x-6\right)\left(\frac{4}{\sqrt{4x-8}+4}+\frac{36}{2\sqrt{9x-18}+12}-\frac{1}{\sqrt{x-2}+2}\right)=0\)

Thấy: \(\frac{4}{\sqrt{4x-8}+4}+\frac{36}{2\sqrt{9x-18}+12}-\frac{1}{\sqrt{x-2}+2}=0\) vô nghiệm

Nên x-6=0 suy ra x=6

5 tháng 7 2017

a. => | x-2 | = 8 

         x=10

=> |x-2|=-8

      x=-6

29 tháng 10 2020

a) \(\text{Đ}K\text{X}\text{Đ}:\frac{3}{2}\le x\le\frac{5}{2}\)

Áp dụng BĐT Bunhiacopxki ta có:

\(VT=\sqrt{2x-3}+\sqrt{5-2x}\le\sqrt{2\left(2x-3+5-2x\right)}=2\)

Dấu '=' xảy ra khi \(\sqrt{2x-3}=\sqrt{5-2x}\Leftrightarrow x=2\)

Lại có: \(VP=3x^2-12x+14=3\left(x-2\right)^2+2\ge2\)

Dấu '=' xảy ra khi x=2

Do đó VT=VP khi x=2

29 tháng 10 2020

b) ĐK: \(x\ge0\). Ta thấy x=0 k pk là nghiệm của pt, chia 2 vế cho x ta có:

\(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\Leftrightarrow x-2-\sqrt{x}-\frac{2}{\sqrt{x}}+\frac{4}{x}=0\)

\(\Leftrightarrow\left(x+\frac{4}{x}\right)-\left(\sqrt{x}+\frac{2}{\sqrt{x}}\right)-2=0\)

Đặt \(\sqrt{x}+\frac{2}{\sqrt{x}}=t>0\Leftrightarrow t^2=x+4+\frac{4}{x}\Leftrightarrow x+\frac{4}{x}=t^2-4\), thay vào ta có:

\(\left(t^2-4\right)-t-2=0\Leftrightarrow t^2-t-6=0\Leftrightarrow\left(t-3\right)\left(t+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\end{cases}}\)

Đối chiếu ĐK  của t

\(\Rightarrow t=3\Leftrightarrow\sqrt{x}+\frac{2}{\sqrt{x}}=3\Leftrightarrow x-3\sqrt{x}+2=0\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=1\end{cases}}\)

20 tháng 10 2017

\(\sqrt{x^2+16}-\sqrt{x^2+7}=3x-8\)

\(\Leftrightarrow\left(\sqrt{x^2+16}-5\right)+\left(4-\sqrt{x^2+7}\right)=3x-9\)

\(\Leftrightarrow\frac{x^2-9}{\sqrt{x^2+16}+5}+\frac{9-x^2}{\sqrt{x^2+7}+4}=3\left(x-3\right)\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{x+3}{\sqrt{x^2+16}+5}-\frac{x+3}{\sqrt{x^2+7}+4}-3\right)=0\)

\(\Leftrightarrow x=3\)

19 tháng 7 2019

À câu a mình tự làm được rồi nhé! Các bạn chỉ cần làm câu b cho mình là được.

19 tháng 7 2019

b, \(\frac{2\sqrt{x}}{\sqrt{x+1}}+\sqrt{x}=\sqrt{x+9}\)

ĐK \(x\ge0\)

Pt 

<=> \(2\sqrt{x}+\sqrt{x\left(x+1\right)}=\sqrt{\left(x+1\right)\left(x+9\right)}\)

<=> \(4x+x^2+x+4\sqrt{x^2\left(x+1\right)}=x^2+10x+9\)

 <=> \(4x\sqrt{x+1}=5x+9\)

<=> \(16x^2\left(x+1\right)=25x^2+90x+81\)với mọi \(x\ge0\)

<=> \(16x^3-9x^2-90x-81=0\)

<=> \(x=3\)(tm ĐK)

Vậy x=3