K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2019

\(x^2-5x+7=0\)

\(\Rightarrow x(x-5)+7=0\)

\(\Rightarrow x(x+5)=-7\)

Làm nốt :v

20 tháng 5 2019

\(x^2-5x+7=0\)

\(\Leftrightarrow x^2-2.\frac{5}{4}x+\frac{25}{4}-\frac{25}{4}+7=0\)

\(\Leftrightarrow\left(x-\frac{5}{2}\right)^2+\frac{3}{4}=0\)

Phương trình vô nghiệm vì : \(\left(x-\frac{5}{2}\right)^2\ge0\forall x\inℝ\)nên \(\left(x-\frac{5}{2}\right)^2+\frac{3}{4}>0\) với \(x\inℝ\)

3 tháng 2 2016

<=> xy+5x+3y+15=xy+8x+y+8                 <=> 3x-2y=7           <=>  9x-6y=21 <=> x=3            <=> x=3

      10xy+14x-15y-21=10xy+10x-12y-12            4x-3y=9                  8x-6y=18       8.3-6y=18           y=1

3 tháng 2 2016

moi hok lop 6 thoi

2 tháng 2 2016

em moi hoc lop 6 thoi sao lam duoc toan lop 9

2 tháng 2 2016

Grade 5 students only know how to do

15 tháng 8 2016

a) Xét \(\Delta=5^2-4\left(3m-1\right)=-12m+29\)

Để pt có nghiệm thì \(\Delta\ge0\) , tức là \(-12m+29\ge0\Leftrightarrow m\le\frac{29}{12}\)

Khi đó : \(\begin{cases}x_1=\frac{-5-\sqrt{29-12m}}{2}\\x_2=\frac{-5+\sqrt{29-12m}}{2}\end{cases}\)

b) Xét : \(\Delta'=6^2-2.\left(-15m\right)=30m+36\)

Để pt có nghiệm thì \(\Delta\ge0\) , tức là \(30m+36\ge0\Leftrightarrow m\ge-\frac{6}{5}\)

Khi đó : \(\begin{cases}x_1=\frac{-6-\sqrt{30m+36}}{2}\\x_2=\frac{-6+\sqrt{30m+36}}{2}\end{cases}\)

15 tháng 3 2016

câu 1

a)C1:denta

x^2 +5x+4 =0 

<=>52-4(1.4)=9

\(\Leftrightarrow x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}=\frac{-5\pm\sqrt{9}}{2}\)

=>x=-4 hoặc -1

C2:vi ét

tổng các nghiệm x1+x2=\(-\frac{b}{a}=-5\)

tích các nghiệm x1*x2=\(\frac{c}{a}=4\)

=>x=-4 hoặc -1

3 tháng 8 2017

Ta có hệ \(\hept{\begin{cases}\left(4x^2+1\right)x+\left(y-3\right)\sqrt{5-2y}=0\left(1\right)\\4x^2+y^2+2\sqrt{3-4x}=7\left(2\right)\end{cases}}\)

ĐK \(\hept{\begin{cases}y\ge\frac{5}{2}\\x\le\frac{3}{4}\end{cases}}\)

Đặt \(\hept{\begin{cases}2x=a\\\sqrt{5-2y}=b\ge0\end{cases}\Rightarrow\hept{\begin{cases}4x^2=a^2\\5-2y=b^2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}4x^2=a^2\\y-3=\frac{5-b^2}{2}-3=\frac{-1-b^2}{2}\end{cases}}\)

Thế vào (1) ta có \(\left(a^2+1\right)\frac{a}{2}+\frac{-1-b^2}{2}b=0\)

\(\Leftrightarrow\frac{a^3+a}{2}+\frac{-b^3-b}{2}=0\Leftrightarrow a^3-b^3+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)

\(\Leftrightarrow a=b\)vì \(a^2+ab+b^2+1>0\forall a,b\)

\(\Rightarrow2x=\sqrt{5-2y}\Rightarrow4x^2=5-2y\Rightarrow y=\frac{5-4x^2}{2}\)

Thế y vào (2) ta có \(4x^2+\left(\frac{5-4x^2}{2}\right)^2+2.\sqrt{3-4x}=7\)

\(\Leftrightarrow16x^2+\left(5-4x^2\right)^2+8\sqrt{3-4x}=28\)\(\Leftrightarrow16x^2+25-40x^2+16x^4+8\sqrt{3-4x}-28=0\)

\(\Leftrightarrow16x^4-24x^2+8\sqrt{3-4x}-3=0\)

\(\Leftrightarrow\left(16x^4-1\right)-\left(24x^2-6\right)+\left(8\sqrt{3-4x}-8\right)=0\)

\(\Leftrightarrow\left(4x^2-1\right)\left(4x^2+1\right)-6\left(4x^2-1\right)+\left(8\sqrt{3-4x}-8\right)=0\)

\(\Leftrightarrow\left(4x^2-1\right)\left(4x^2+1\right)-6\left(4x^2-1\right)+8.\frac{2-4x}{\sqrt{3-4x}+1}=0\)

\(\Leftrightarrow\left(2x+1\right)\left(2x-1\right)\left(4x^2+1\right)-6\left(2x+1\right)\left(2x-1\right)-8.2.\frac{2x-1}{\sqrt{3-4x}+1}=0\)

\(\Leftrightarrow\left(2x-1\right)\left[\left(2x+1\right)\left(4x^2+1\right)-6\left(2x+1\right)-\frac{16.1}{\sqrt{3-4x}+1}\right]=0\)

\(\Leftrightarrow\left(2x-1\right)\left[\left(2x+1\right)\left(4x^2-5\right)-\frac{16}{\sqrt{3-4x}+1}\right]=0\)

\(\Leftrightarrow2x-1=0\)

Vì với \(y=\frac{5-4x^2}{2}\ge\frac{5}{2}\Rightarrow4x^2-5< 0\Rightarrow\left(2x+1\right)\left(4x^2-5\right)-\frac{16}{\sqrt{3-4x}+1}< 0\)

\(\Leftrightarrow x=\frac{1}{2}\Rightarrow y=\frac{5-4\left(\frac{1}{2}\right)^2}{2}=2\)

Vậy hệ có nghiệm \(\left(x;y\right)=\left(\frac{1}{2};2\right)\)

22 tháng 4 2020

delta= \(\left(-5\right)^2-4.2.\left(-1\right)=25+8=33>0..\)

=> pt có 2 nghiệm phân biệt 

Áp dụng hệ thức Vi-et:

\(\hept{\begin{cases}x_1+x_2=-\frac{5}{2}\\x_1x_2=\frac{-1}{2}\end{cases}}\)

A= \(x_1^2-2x_1-2x_2+x_2^2=x_1^2+x_2^2+2x_1x_2-2x_1x_2-2\left(x_1+x_2\right)..\)

\(\Leftrightarrow A=\left(x_1+x_2\right)^2-2x_1x_2-2\left(x_1+x_2\right)..\)

Thay vào A ta được: \(A=\left(-\frac{5}{2}\right)^2-2.\left(-\frac{1}{2}\right)-2.\left(-\frac{5}{2}\right).\)

                                        \(=\frac{25}{4}+1+5=\frac{49}{4}.\)

Học tốt

12 tháng 3 2016

thông điệp nhỏ:

hay kkhi ko muốn k