Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x+5}{x-1}=\frac{x+1}{x-3}-\frac{8}{x^2-4x+3}\)
\(ĐKXĐ:\)\(x\ne1\)và \(x\ne3\)
\(\frac{\left(x+5\right)\left(x-3\right)}{\left(x-1\right)9x-3}=\frac{\left(x+1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\frac{8}{\left(x-3\right)\left(x-1\right)}\)
\(\Leftrightarrow\)\(x^2-3x+5x-15=x^2-x+x-1-8\)
\(\Leftrightarrow\)\(x^2-3x+5x-15-x^2+x-x+1+8=0\)
\(\Leftrightarrow\)\(2x-6=0\)
\(\Leftrightarrow\)\(2x=6\)
\(\Leftrightarrow\)\(x=3\)( loại )
Vậy \(S=\varnothing\)
b) \(\frac{y+1}{y-2}-\frac{5}{y+2}=\frac{12}{y^2-4}+1\)
\(ĐKXĐ:\)\(y\ne2\)và \(y\ne-2\)
\(\frac{\left(y+1\right)\left(y+2\right)}{\left(y-2\right)\left(y+2\right)}-\frac{5\left(y-2\right)}{\left(y-2\right)\left(y+2\right)}=\frac{12}{\left(y-2\right)\left(y+2\right)}+\frac{\left(y-2\right)\left(y+2\right)}{\left(y-2\right)\left(y+2\right)}\)
\(\Leftrightarrow\)\(y^2+2y+y+2-5y+10=12+y^2-4\)
\(\Leftrightarrow\)\(y^2+2y+y+2-5y+10-10-12-y^2+4=0\)
\(\Leftrightarrow\)\(-2y+4=0\)
\(\Leftrightarrow\)\(-2y=-4\)
\(\Leftrightarrow\)\(y=2\)( loại 0
Vậy \(S=\varnothing\)
a, Đặt \(x^2-4x+8=a\left(a>0\right)\)
\(\Rightarrow a-2=\frac{21}{a+2}\)
\(\Leftrightarrow a^2-4=21\Rightarrow a^2=25\Rightarrow a=5\)
Thay vào là ra
b) ĐK: \(y\ne1\)
bpt <=> \(\frac{4\left(1-y\right)}{1-y^3}+\frac{1+y+y^2}{1-y^3}+\frac{2y^2-5}{1-y^3}\le0\)
<=> \(\frac{3y^2-3y}{1-y^3}\le0\)
\(\Leftrightarrow\frac{y\left(y-1\right)}{\left(y-1\right)\left(y^2+y+1\right)}\ge0\)
\(\Leftrightarrow\frac{y}{y^2+y+1}\ge0\)
vì \(y^2+y+1=\left(y+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
nên bpt <=> \(y\ge0\)
1:
a: =>28x-8=9x+3
=>19x=11
=>x=11/19
b: =>(3x-1)(x-1)=(2x+1)(x+1)
=>3x^2-4x+1=2x^2+3x+1
=>x^2-7x=0
=>x=0 hoặc x=7
\(a.\Leftrightarrow\frac{5x^2+16}{\left(x+4\right)\left(x-4\right)}=\frac{\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}DKXD:x\ne4;-4\)
\(\Rightarrow5x^2+16=2x^2-8x-x+4+3x^2+12x-x-4\)
\(\Leftrightarrow2x=16\)
\(\Leftrightarrow x=8\)
\(b.\Leftrightarrow\frac{\left(y+1\right)\left(y+2\right)-5\left(y-2\right)}{\left(y-2\right)\left(y+2\right)}=\frac{12+\left(y-2\right)\left(y+2\right)}{\left(y-2\right)\left(y+2\right)}.DKXD:y\ne2;-2\)
\(\Rightarrow y^2+2y+y+2-5y+10=12+y^2-4\)
\(\Leftrightarrow-2y=-4\)
\(\Leftrightarrow y=2\)
bài 2 :
x3+7y=y3+7x
x3-y3-7x+7x=0
(x-y)(x2+xy+y2)-7(x-y)=0
(x-y)(x2+xy+y2-7)=0
\(\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\left(loại\right)\\x^{2^{ }}+xy+y^2-7=0\end{matrix}\right.\)
x2+xy+y2=7 (*)
Giải pt (*) ta đc hai nghiệm phan biệt:\(\left[{}\begin{matrix}x=1va,y=2\\x=2va,y=1\end{matrix}\right.\)
Rõ ràng \(x=y=z=0\) là nghiệm của hệ
Với \(xyz\ne0\), Ta có
\(y=\frac{2x^2}{x^2+1}\le\frac{2x^2}{2x}=x\)
\(z=\frac{3y^3}{y^4+y^2+1}\le\frac{3y^3}{3y^2}=y\)
\(x=\frac{4z^4}{z^6+z^4+z^2+1}\le\frac{4z^4}{4z^3}=z\)
Suy ra \(y\le x\le z\le y\Rightarrow x=y=z\)
Từ pt thứ nhất của hệ suy ra
\(\frac{2x^2}{x^2+1}=x\Leftrightarrow2x=1=x^2\)( vì \(x\ne0\))\(\Leftrightarrow x=1\)
Vậy hệ pt có hai nghiệm \(\left(0,0,0\right)\)và \(\left(1,1,1\right)\)
#)Giải :
VD1:
Với \(\orbr{\begin{cases}x>0\\x< -1\end{cases}}\)ta có :
\(x^3< x^3+x^2+x+1< \left(x+1\right)^3\)
\(\Rightarrow x^3< y^3< \left(x+1\right)^3\)( không thỏa mãn )
\(\Rightarrow-1\le x\le0\)
Mà \(x\in Z\Rightarrow x\in\left\{-1;0\right\}\)
Với \(\orbr{\begin{cases}x=-1\\x=0\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}}\)
Vậy...........................
#)Giải :
VD2:
\(x^4-y^4+z^4+2x^2z^2+3x^2+4z^2+1=0\)
\(\Leftrightarrow y^4=x^4+z^4+2x^2z^2+3x^2+4z^2+1\)
\(\Leftrightarrow y^4=\left(x^2+y^2\right)+3x^2+4z^2+1\)
Ta dễ nhận thấy : \(\left(x^2+y^2\right)^2< y^4< \left(x^2+y^2+2\right)^2\)
Do đó \(y^4=\left(x^2+y^2+1\right)^2\)
Thay vào phương trình, ta suy ra được \(x=z=0\)
\(\Rightarrow y=\pm1\)