Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(t=\sqrt{x^2+4\sqrt{5}}\to t>0.\) Phương trình trở thành \(\frac{\left(2t^2-7\right)^2-161}{4}=\left(34-3t^2\right)t\Leftrightarrow\left(2t^2-7\right)^2-161=4t\left(34-3t^2\right)\)
\(\Leftrightarrow\left(t^2-2t-4\right)\left(t^2+5t+7\right)=0\Leftrightarrow t^2-2t=4\Leftrightarrow t=1+\sqrt{5}.\) (Vì t>0)
Vậy ta được \(x^2+4\sqrt{5}=\left(1+\sqrt{5}\right)^2\Leftrightarrow x^2=\left(\sqrt{5}-1\right)^2\Leftrightarrow x=\pm\left(\sqrt{5}-1\right).\)
a: =>3x^2-3x-2x+2=0
=>(x-1)(3x-2)=0
=>x=2/3 hoặc x=1
b: =>2x^2=11
=>x^2=11/2
=>\(x=\pm\dfrac{\sqrt{22}}{2}\)
c: Δ=5^2-4*1*7=25-28=-3<0
=>PTVN
f: =>6x^4-6x^2-x^2+1=0
=>(x^2-1)(6x^2-1)=0
=>x^2=1 hoặc x^2=1/6
=>\(\left[{}\begin{matrix}x=\pm1\\x=\pm\dfrac{\sqrt{6}}{6}\end{matrix}\right.\)
d: =>(5-2x)(5+2x)=0
=>x=5/2 hoặc x=-5/2
e: =>4x^2+4x+1=x^2-x+9 và x>=-1/2
=>3x^2+5x-8=0 và x>=-1/2
=>3x^2+8x-3x-8=0 và x>=-1/2
=>(3x+8)(x-1)=0 và x>=-1/2
=>x=1
`a)\sqrt{3x}-5\sqrt{12x}+7\sqrt{27x}=12` `ĐK: x >= 0`
`<=>\sqrt{3x}-10\sqrt{3x}+21\sqrt{3x}=12`
`<=>12\sqrt{3x}=12`
`<=>\sqrt{3x}=1`
`<=>3x=1<=>x=1/3` (t/m)
`b)5\sqrt{9x+9}-2\sqrt{4x+4}+\sqrt{x+1}=36` `ĐK: x >= -1`
`<=>15\sqrt{x+1}-4\sqrt{x+1}+\sqrt{x+1}=36`
`<=>12\sqrt{x+1}=36`
`<=>\sqrt{x+1}=3`
`<=>x+1=9`
`<=>x=8` (t/m)
cái nằm dưới căn pt đc (7x-4)(x^2-x+3) , (7x-4)+(x^2-x+3)=x^2+6x-1 ,đặt ẩn phụ mà triển