Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này khá khó chịu tui làm bên h r` thì phải mà giờ lật lại có toi bn rảnh thì vô đây tìm nhé h.vn/vip/thangbnsh
\(\left(x-2008\right)^{2010}+\left(x-2009\right)^{2010}=1\)\(1\)====>> \(\hept{\begin{cases}x-2008=1\\x-2009=0\end{cases}}< =>\hept{\begin{cases}x=20009\\x=2009\end{cases}}< =>x=20009\) Vậy x=2009 thì PT có GT là 1
Xét pt \(\left|x-1\right|^{2010}+\left|x-2\right|^{2011}=1\) (1)
Nhận thấy \(x=1\) và \(x=2\) là 2 nghiệm của pt
- Với \(x>2\Rightarrow\left\{{}\begin{matrix}\left|x-2\right|>0\\\left|x-1\right|>1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|x-1\right|^{2010}>1\\\left|x-2\right|^{2011}>0\end{matrix}\right.\)
\(\Rightarrow\left|x-1\right|^{2010}+\left|x-2\right|^{2011}>1\) nên pt vô nghiệm
- Với \(x< 1\Rightarrow\left\{{}\begin{matrix}\left|x-1\right|=\left|1-x\right|>0\\\left|x-2\right|=\left|2-x\right|>1\end{matrix}\right.\)
Tương tự như trên ta có \(\left|x-1\right|^{2010}+\left|x-2\right|^{2011}>1\) \(\Rightarrow\) pt vô nghiệm
- Với \(1< x< 2\Rightarrow\left\{{}\begin{matrix}0< \left|x-1\right|< 1\\0< \left|2-x\right|< 1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x-1\right|^{2010}< \left|x-1\right|\\\left|2-x\right|^{2011}< \left|2-x\right|\end{matrix}\right.\)
\(\Rightarrow\left|x-1\right|^{2010}+\left|x-2\right|^{2011}< \left|x-1\right|+\left|2-x\right|=x-1+2-x=1\)
\(\Rightarrow\) Pt vô nghiệm
Vậy pt có đúng 2 nghiệm \(x=1\); \(x=2\)
Lần lượt thế vào \(x^2+y^2-2x=11\) để tìm y
\(x-2008=X;y-2009=Y;z-2010=Z\)
\(\sqrt{X}+\sqrt{Y}+\sqrt{Z}+3012=\frac{1}{2}\left(X+Y+Z+2008+2009+2010\right)\)
\(2.\sqrt{X}+2\sqrt{Y}+2\sqrt{Z}+2.3012=X+Y+Z+2009\cdot3\)
\(\left(X-2\sqrt{X}+1\right)+\left(Y-2\sqrt{Y}+1\right)+\left(Z-2\sqrt{Z}+1\right)+3.2008=2.3012\)
\(\left(\sqrt{X}-1\right)^2+\left(\sqrt{Y}-1\right)^2+\left(\sqrt{Z}-1\right)^2=2.3012-3.2008=0\)
\(X=1;Y=1;Z=1\Rightarrow x=2009;y=2010;z=2011\)
Điều kiện : \(x\ge2;y\ge-2009;z\ge2010;x+y+z\ge0\)
PT <=> \(2.\sqrt{x-2}+2.\sqrt{y+2009}+2.\sqrt{z-2010}=x+y+z\)
Áp dụng B ĐT Cô- si với 2 số dương a; b : \(2\sqrt{ab}\le a+b\) ta có:
\(2.\sqrt{x-2}\le x-2+1=x-1\)
\(2.\sqrt{y+2009}\le y+2009+1=y+2010\)
\(2.\sqrt{z-1010}\le z-2010+1=z-2009\)
=> \(2.\sqrt{x-2}+2.\sqrt{y+2009}+2.\sqrt{z-2010}\le x-1+y+2010+z-2009=x+y+z\)
Dấu "=" xảy ra <=> x - 2 = 1 ; y + 2009 = 1; z - 2010 = 1
=> x = 3; y = -2008; z = 2011 là nghiệm của PT
\(\left[x-1\right]^{2010}\ge0\)
\(\Rightarrow x^{2003}\ge1\)
\(\Rightarrow x^{2003}+\left[x-1\right]^{2010}\ge1\)
=> x2003 + [x-1]2010 = 1 khi x = 1
Nó có 2 nghiệm là \(\hept{\begin{cases}x=0\\x=1\end{cases}}\) lận đấy b Đào Trọng Luân - Trang của Đào Trọng Luân - Học toán với OnlineMath