![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Trung bình cộng của hai so bằng 135. Biết một trong hai số la 246. Tìm số kia
\(2x^2+2x+1=\sqrt{4x+1}\)
\(\left(2x^2+2x+1\right)^2=\left(\sqrt{4x+1}\right)^2\)
\(4x^4+8x^3+8x^2+4x+1=4x+1\)
\(\Leftrightarrow4x^4+8x^3+8x^2=0\)
\(\Leftrightarrow4x^2\left(x^2+2x+2\right)=0\)
\(\Leftrightarrow x=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(x^2-6x+26=6\sqrt{2x+1}\) (ĐKXĐ : \(x\ge-\frac{1}{2}\) )
\(\Leftrightarrow x^2-6x+26-6\sqrt{2x+1}=0\)
\(\Leftrightarrow\left(x^2-6x+8\right)-\left(6\sqrt{2x+1}-18\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)-6\left(\sqrt{2x+1}-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)-6\left(\frac{2x+1-9}{\sqrt{2x+1}+3}\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)-\frac{12\left(x-4\right)}{\sqrt{2x+1}+3}=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-2-\frac{12}{\sqrt{2x+1}+3}\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-4=0\\x-2-\frac{12}{\sqrt{2x+1}+3}=0\end{array}\right.\)
Với x - 4 = 0 => x = 4 (TMĐK)
Với \(x-2-\frac{12}{\sqrt{2x+1}+3}=0\Rightarrow x=4\left(TM\right)\)
Vậy phương trình có nghiệm x = 4
b) \(x+\sqrt{2x-1}=3+\sqrt{x+2}\) ( ĐKXĐ : \(x\ge\frac{1}{2}\))
\(x+\sqrt{2x-1}-3-\sqrt{x+2}=0\)
\(\Leftrightarrow\left(\sqrt{2x-1}-\sqrt{5}\right)-\left(\sqrt{x+2}-\sqrt{5}\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\frac{2x-1-5}{\sqrt{2x-1}+\sqrt{5}}-\frac{x+2-5}{\sqrt{x+2}+\sqrt{5}}+\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{2}{\sqrt{2x-1}+\sqrt{5}}-\frac{1}{\sqrt{x+2}+\sqrt{5}}+1\right)=0\)
Vì \(x\ge\frac{1}{2}\) nên \(\frac{2}{\sqrt{2x-1}+\sqrt{5}}-\frac{1}{\sqrt{x+2}+\sqrt{5}}+1>0\) . Do đó x-3 = 0 => x = 3 (TMĐK)
Vậy phương trình có nghiệm x = 3
![](https://rs.olm.vn/images/avt/0.png?1311)
6.
Đặt \(\left\{{}\begin{matrix}\sqrt{5x^2+6x+5}=a\\4x=b\end{matrix}\right.\)
\(\Rightarrow a\left(a^2+1\right)=b\left(b^2+1\right)\)
\(\Leftrightarrow a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt{5x^2+6x+5}=4x\left(x\ge0\right)\)
\(\Leftrightarrow5x^2+6x+5=16x^2\)
\(\Leftrightarrow11x^2-6x-5=0\)
\(\Rightarrow x=1\)
4. Bạn coi lại đề (chính xác là pt này ko có nghiệm thực)
5.
\(\Leftrightarrow x^2+x+6-\left(2x+1\right)\sqrt{x^2+x+6}+6x-6=0\)
Đặt \(\sqrt{x^2+x+6}=t>0\)
\(t^2-\left(2x+1\right)t+6x-6=0\)
\(\Delta=\left(2x+1\right)^2-4\left(6x-6\right)=\left(2x-5\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\frac{2x+1+2x-5}{2}=2x-2\\t=\frac{2x+1-2x+5}{2}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+6}=2x-2\left(x\ge1\right)\\\sqrt{x^2+x+6}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+6=4x^2-8x+4\left(x\ge1\right)\\x^2+x+6=9\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Đặt \(x^2+3x+1=y\)
=> y(y+1) - 6 = 0
=> \(y^2+y-6=0\)
=> \(\left[\begin{array}{nghiempt}y=2\\y=-3\end{array}\right.\)
Với y = 2 ta có:
\(x^2+3x+1=2\)
=> \(\left[\begin{array}{nghiempt}x=\frac{-3+\sqrt{13}}{2}\\x=\frac{-3-\sqrt{13}}{2}\end{array}\right.\)
Với y = -3 ta có:
\(x^2+3x+1=-3\)
=>\(\left[\begin{array}{nghiempt}x=1\\x=-4\end{array}\right.\)
Có j không hiểu có thể hỏi lại mk
Chúc bạn làm bài tốt
b) \(\Leftrightarrow\left(\sqrt{x+3}-\sqrt{x-2}\right)^2=1^2\)
\(\Leftrightarrow x+3+x-2-2\sqrt{\left(x+3\right)\cdot\left(x-2\right)}=1\)
\(\Leftrightarrow2x+1-1=2\sqrt{\left(x+3\right)\left(x-2\right)}\)
\(\Leftrightarrow2x=2\sqrt{\left(x+3\right)\left(x-2\right)}\)
\(\Leftrightarrow x=\sqrt{\left(x+3\right)\left(x-2\right)}\)
\(\Leftrightarrow x^2=\left(\sqrt{\left(x+3\right)\left(x-2\right)}\right)^2\)
\(\Leftrightarrow x^2=x^2+x-6\)
\(\Leftrightarrow x-6=0\)
\(\Leftrightarrow x=6\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Với mọi x ta có \(x^2+3x+3=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}>0;2x^2+3x+2=2\left(x+\frac{3}{4}\right)^2+\frac{7}{8}>0\)
Áp dụng bất đẳng thức cosi cho 3 số
\(\sqrt[3]{x^2+3x+3}=\sqrt[3]{\left(x^2+3x+3\right)\cdot1\cdot1}\le\frac{x^2+3x+3+1+1}{3}=\frac{x^2+3x+5}{3}\)
\(\sqrt[3]{2x^2+3x+2}=\sqrt[3]{\left(2x^2+3x+2\right)\cdot1\cdot1}\le\frac{2x^2+3x+4}{3}\)
\(\Rightarrow6x^2+12x+8\le\frac{x^2+3x+5}{3}+\frac{2x^2+3x+4}{3}=x^2+2x+3\)
\(\Rightarrow5x^2+10x+5\le0\Rightarrow5\left(x+1\right)^2\le0\Rightarrow x=-1\)
vậy phương trình có nghiệm x=-1
Bài này sử dụng cách đặt ẩn phụ sẽ đơn giản và nhanh hơn
![](https://rs.olm.vn/images/avt/0.png?1311)
a)ĐKXĐ \(\orbr{\begin{cases}x\ge3+\sqrt{2}\\x\le3-\sqrt{2}\end{cases}}\)
Đặt \(\sqrt{x^2-6x+7}=a\ge0.\)\(\Rightarrow x^2-6x+7=a^2\Leftrightarrow x^2-6x=a^2-7\)
Ta có phương trình:
\(a^2-7+a=5\Leftrightarrow a^2+a-12=0\Leftrightarrow a^2-3a+4a-12=0\)
\(\Leftrightarrow a\left(a-3\right)+4\left(a-3\right)=0\Leftrightarrow\left(a-3\right)\left(a+4\right)=0\)
\(\Leftrightarrow a-3=0\)(Vì \(a\ge0\rightarrow a+4\ge4\))
\(\Leftrightarrow a=3\Leftrightarrow\sqrt{x^2-6x+7}=3\)
\(\Leftrightarrow x^2-6x+7=9\Leftrightarrow x^2-6x-2=0\)
Ta có \(\Delta^'=3^2-\left(-2\right)=11>0\)
\(\Rightarrow x_1=3-\sqrt{11}\)(TMĐK)
\(x_2=3+\sqrt{11}\)(TMĐK)
Kết luận vậy phương trình đã cho có 2 nghiệm phân biệt .............
b) ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{x+1}=a\ge0;\sqrt{x+6}=b>0\)
\(\Rightarrow b^2-a^2=x+6-\left(x+1\right)=5\)
Ta có hệ phương trinh :\(\hept{\begin{cases}a+b=5\\b^2-a^2=5\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(b-a\right)\left(b+a\right)=5\\a+b=5\end{cases}}\Leftrightarrow\hept{\begin{cases}b-a=1\\a+b=5\end{cases}\Leftrightarrow\hept{\begin{cases}a=2\\b=3\end{cases}}}\)(TMĐK)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+1}=2\\\sqrt{x+6}=3\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=4\\x+6=9\end{cases}\Leftrightarrow}}x=3\left(TMĐK\right).\)
Vậy phương trình đã cho có nghiệm duy nhất là ...
Chỗ đó bạn viết đề mình không biết vế phải bằng 5 hay 55 nữa
Nếu là 55 thì làm tương tự và chỗ hệ thay bằng \(\hept{\begin{cases}a+b=55\\b^2-a^2=5\end{cases}}\)Giải tương tự tìm được \(\hept{\begin{cases}a=\frac{302}{11}\\b=\frac{303}{11}\end{cases}\Leftrightarrow x=\frac{91083}{121}\left(TMĐK\right).}\)
c) ĐKXĐ \(x\ge1\)
\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=4\)
\(\Leftrightarrow\sqrt{x-1-2.\sqrt{x-1}.2+4}+\sqrt{x-1-2.\sqrt{x-1}.3+9}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=4\)
\(\Leftrightarrow|\sqrt{x-1}-2|+|\sqrt{x-1}-3|=4\)(3)
* Nếu \(\sqrt{x-1}< 2\)phương trình (3) tương đương với
\(2-\sqrt{x-1}+3-\sqrt{x-1}=4\Leftrightarrow2\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=\frac{1}{4}\Leftrightarrow x=\frac{5}{4}\left(TMĐK\right)\)
* Nếu \(2\le\sqrt{x-1}\le3\)phương trình (3) tương đương với
\(\sqrt{x-1}-2+3-\sqrt{x-1}=4\Leftrightarrow1=4\left(loại\right)\)
* Nếu \(\sqrt{x-1}>3\)phương trình (3) tương đương với
\(\sqrt{x-1}-2+\sqrt{x-1}-3=4\)\(\Leftrightarrow2\sqrt{x-1}=9\Leftrightarrow\sqrt{x-1}=\frac{9}{2}\Leftrightarrow x-1=\frac{81}{4}\Leftrightarrow x=\frac{85}{4}\left(TMĐK\right)\)
Vậy phương trình đã cho có 2 nghiệm phân biệt .......
'
![](https://rs.olm.vn/images/avt/0.png?1311)
b/ Xác định điều kiện xác định ta có
\(\hept{\begin{cases}2-x^2+2x\ge0\\-7x-8\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}1-\sqrt{3}\le x\le1+\sqrt{3}\\x\le\frac{-8}{7}\end{cases}}\)
=> Tập xác định của phương trình là tập rỗng nên phương trình vô nghiệm
Cái đề đúng không thế cháu hình như bị vô nghiệm hết cả 2 bài luôn
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ: x2 - 3x + 3 \(\ge\) 0
Đặt t = \(\sqrt{x^2-3x+3}\) (t \(\ge\) 0)
=> t2 = x2 - 3x + 3 <=> x2 - 3x = t2 - 3
Khi đó ta có pt: 2(t2 - 3) + t + 3 = 0
<=> 2t2 - 6 + t + 3 = 0
<=> 2t2 + t - 3 = 0
<=> (t - 1)(2t + 3) = 0 <=> \(\orbr{\begin{cases}t=1\left(tm\right)\\t=-\frac{3}{2}\left(ktm\right)\end{cases}}\)
Với t = 1 ta có: x2 - 3x = 12 - 3
<=> x2 - 3x+ 2 = 0
<=> (x - 1)(x - 2) = 0 <=> \(\orbr{\begin{cases}x=1\\x=2\end{cases}\left(tmđk\right)}\)
Vậy S = \(\left\{1;2\right\}\)
Đặt: \(\sqrt{x^2-3x+3}=t\ge0\)
=> \(2x^2-6x=2\left(x^2-3x\right)=2\left(t^2-3\right)\)
Ta có phương trình ẩn t : \(2\left(t^2-3\right)+t+3=0\)
<=> \(2t^2+t-3=0\)<=> t = 1 ( tm ) hoặc t = -3/2 ( loại)
Với t = 1 ta có: \(\sqrt{x^2-3x+3}=1\)
<=> \(x^2-3x+2=0\)
<=> x = 1 hoặc x = 2
ĐKXĐ: \(x\ge-\frac{1}{2}\)
\(\Leftrightarrow x^2-8x+16+2x+1-6\sqrt{2x+1}+9=0\)
\(\Leftrightarrow\left(x-4\right)^2+\left(\sqrt{2x+1}-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-4\right)^2=0\\\left(\sqrt{2x+1}-3\right)^2=0\end{matrix}\right.\) \(\Rightarrow x=4\)