Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)DK:x>0.
->\(\sqrt[3]{x^2}\) =20+\(\sqrt[3]{x}\) \(\ge\)20
->DK:\(\sqrt[3]{x}\)\(\ge\) \(\sqrt{20}\) >\(\frac{3}{2}\).
Đặt :\(\sqrt[3]{x}\) =a (a\(\ge\)\(\sqrt{20}\)>\(\frac{3}{2}\) ).
Khi đó ta có phương trình sau:
a2-3a=20.
Giải ra ta có:(a-\(\frac{3}{2}\))2=\(\frac{89}{4}\) mà a>\(\frac{3}{2}\) nên a-\(\frac{3}{2}\) >0.
hay a-\(\frac{3}{2}\) =\(\frac{\sqrt{89}}{2}\).
->a=\(\frac{\sqrt{89}+3}{2}\) (tm).
hay x=(\(\frac{\sqrt{89}+3}{2}\))3 (tm).
Vậy...
b)DK:x\(\varepsilon\) R.
Đặt:\(\sqrt{x^2+1}\)=a (a\(\ge\)1) ; 2x-1=b.->4x-1=2b+1.
Khi đó ta có được phương trình sau:
a.(2b+1)=2a2+b.
<->2ab+a=2a2+b.
<->2a2-2ab-a+b=0.
<->2a(a-b)-(a-b)=0
<->(2a-1).(a-b)=0 mà a\(\ge\)1->2a-1>0.
<->a=b
->a2=b2 hay x2+1=(2x-1)2
Giải ra ta có:3x2-4x=0.
hay x.(3x-4)=0.
<->\(\orbr{\begin{cases}x=0\left(tm\right)\\x=\frac{4}{3}\left(tm\right)\end{cases}}\)
Vậy...
c)DK:x\(\ge\) 2.
->\(\sqrt{\left(x+1\right).\left(x-2\right)}\) -2\(\sqrt{x-2}\)=\(\sqrt{x-1}\)
->DK:x>3.
tối rồi buồn ngủ không giải nữa.
a) (3x2 - 7x – 10)[2x2 + (1 - √5)x + √5 – 3] = 0
=> hoặc (3x2 - 7x – 10) = 0 (1)
hoặc 2x2 + (1 - √5)x + √5 – 3 = 0 (2)
Giải (1): phương trình a - b + c = 3 + 7 - 10 = 0
nên
x1 = - 1, x2 = =
Giải (2): phương trình có a + b + c = 2 + (1 - √5) + √5 - 3 = 0
nên
x3 = 1, x4 =
b) x3 + 3x2– 2x – 6 = 0 ⇔ x2(x + 3) – 2(x + 3) = 0 ⇔ (x + 3)(x2 - 2) = 0
=> hoặc x + 3 = 0
hoặc x2 - 2 = 0
Giải ra x1 = -3, x2 = -√2, x3 = √2
c) (x2 - 1)(0,6x + 1) = 0,6x2 + x ⇔ (0,6x + 1)(x2 – x – 1) = 0
=> hoặc 0,6x + 1 = 0 (1)
hoặc x2 – x – 1 = 0 (2)
(1) ⇔ 0,6x + 1 = 0
⇔ x2 = =
(2): ∆ = (-1)2 – 4 . 1 . (-1) = 1 + 4 = 5, √∆ = √5
x3 = , x4 =
Vậy phương trình có ba nghiệm:
x1 = , x2 = , x3 = ,
d) (x2 + 2x – 5)2 = ( x2 – x + 5)2 ⇔ (x2 + 2x – 5)2 - ( x2 – x + 5)2 = 0
⇔ (x2 + 2x – 5 + x2 – x + 5)( x2 + 2x – 5 - x2 + x - 5) = 0
⇔ (2x2 + x)(3x – 10) = 0
⇔ x(2x + 1)(3x – 10) = 0
Hoặc x = 0, x = , x =
Vậy phương trình có 3 nghiệm:
x1 = 0, x2 = , x3 =
ĐKXĐ: \(x\ge-1\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+1}=a>0\\\sqrt{x+1}=b\ge0\end{matrix}\right.\) ta được:
\(a^2-2b^2=ab\)
\(\Leftrightarrow a^2-ab-2b^2=0\Leftrightarrow\left(a+b\right)\left(a-2b\right)=0\)
\(\Leftrightarrow a-2b=0\Leftrightarrow a=2b\)
\(\Leftrightarrow a^2=4b^2\Leftrightarrow x^2+1=4\left(x+1\right)\)
\(\Leftrightarrow x^2-4x-3=0\) (casio)