Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 + 10x + 25 - 4x2 - 20x = 0
<=> 3x2 + 10x - 25 = 0
<=> (x + 5)(3x - 5) = 0 <=> \(\orbr{\begin{cases}x=-5\\x=\frac{5}{3}\end{cases}}\)
Vậy S = \(\left\{-5;\frac{5}{3}\right\}\)
b. (4x - 5)2 - 2(4x - 5)(4x + 5) = 0
<=> (4x - 5)[(4x - 5) - 2(4x + 5)] = 0
<=> (4x - 5)(4x - 5 - 8x - 10) = 0
<=> (4x - 5)(-4x - 15) = 0 <=> \(\orbr{\begin{cases}x=\frac{5}{4}\\x=-\frac{15}{4}\end{cases}}\)
Vậy S = \(\left\{-\frac{15}{4};\frac{5}{4}\right\}\)
a) (2x-4)(x2-16)=0
\(\Rightarrow\orbr{\begin{cases}2x-4=0\\x^2-16=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\pm4\end{cases}}}\)
Vậy..
b) (x+5)2-25=0
\(\left(x+5\right)^2=25\)
\(\left(x+5\right)^2=\left(\pm5\right)^2\)
\(\Rightarrow\orbr{\begin{cases}x+5=5\\x+5=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-6\end{cases}}}\)
Vậy..
c) x2-6x+9=0
\(x.\left(1-6\right)=-9\)
\(x.\left(-5\right)=-9\)
\(x=\frac{9}{5}\)
chúc bạn học tốt !!!!
a, 2(x+5)=x2+5x
=> 2x+10=x2+5x
=> 0=x2+5x-2x-10
=> x2+3x-10=0
=> x2+5x-2x-10=0
=> x(x+5)-2(x+5)=0
=> (x-2)(x+5)=0
=> x-2 =0 hoặc x+5 =0
=> x=2 hoặc x=-5
b, 4x2-25=(2x-5)(2x+7)
=> (2x)2-52=(2x-5)(2x+7)
=> (2x-5)(2x+5) - (2x-5)(2x+7)=0
=> (2x-5)(2x+5-2x-7)=0
=> (2x-5)(-2)=0
=> 2x-5=0
=> 2x=5
=> x =2,5
c, x3+x=0
=>x(x2+1)=0
=> x=0 hoặc x2+1=0
Mà x2+1 >= 1 nên x=0
d, Hình như là thiếu đề
a,=2x+10=x2+5x
=-x2-2x-5x+10=0
=-x2-7x+10=0
Delta=(-7)2-4.-1.10=89
x1=7+căn89/2 x2=7-căn 89/2
CÁC CÂU KHÁC TỰ GIẢI NHA bạn
\(4x^2-4x-5\left|2x-1\right|-5=0\)
\(\Leftrightarrow-5\left|2x-1\right|=5-4x^2+4x\)
\(\Leftrightarrow\left|2x-1\right|=\frac{-4x^2+4x+5}{-5}\)
\(\Leftrightarrow\left|2x-1\right|=\frac{4x\left(x-1\right)}{5}-1\)
TH1 : \(2x-1=\frac{4x\left(x-1\right)}{5}-1\Leftrightarrow2x=\frac{4x\left(x-1\right)}{5}\)
\(\Leftrightarrow10x=4x^2-4x\Leftrightarrow14x-4x^2=0\)
\(\Leftrightarrow-2x\left(2x-7\right)=0\Leftrightarrow x=0;x=\frac{7}{2}\)
TH2 : \(2x-1=-\left(\frac{4x\left(x-1\right)}{5}-1\right)\Leftrightarrow2x-1=-\frac{4x\left(x-2\right)}{5}+1\)
\(\Leftrightarrow2x-2=-\frac{4x\left(x-2\right)}{5}\Leftrightarrow10x-10=-4x^2+8x\)
\(\Leftrightarrow2x-10+4x^2=0\Leftrightarrow2\left(2x^2+x-5\ne0\right)=0\)tự chứng minh
Vậy tập nghiệm của phương trình là S = { 0 ; 7/2 }
(3x + 1)2 - (3x - 1).(3x + 1) = 1
<=> (3x + 1).[(3x + 1) - (3x - 1)] = 1
<=> (3x + 1).(3x + 1 - 3x + 1) = 1
<=> (3x + 1).2 = 1
<=> 3x + 1 = 1/2
<=> 3x = -1/2
<=> x = -1/6
Vậy S = {-1/6}.
36x2 - 25 - x.(6x - 5) = 0
<=> (36x2 - 25) - x.(6x - 5) = 0
<=> [(6x)2 - 52] - x.(6x - 5) = 0
<=> (6x - 5).(6x + 5) - x.(6x - 5) = 0
<=> (6x - 5).(6x + 5 - x) = 0
<=> (6x - 5).(5x + 5) = 0
<=> 5.(6x - 5).(x + 1) = 0
<=> 6x - 5 = 0 hoặc x + 1 = 0
<=> x = 5/6 hoặc x = -1
Vậy S = {-1; 5/6}.
a)
\(\left(3x+1\right)^2-\left(3x-1\right)\left(3x+1\right)=1\)
\(\Rightarrow\left(9x^2+6x+1\right)-\left(9x^2-1\right)=1\)
\(\Rightarrow6x+2=1\)
\(\Rightarrow x=-\frac{1}{6}\)
Vậy pt có nghiệm là x = - 1 / 6
b)
\(36x^2-25-x\left(6x-5\right)=0\)
\(\Rightarrow\left(36x^2-25\right)-x\left(6x-5\right)=0\)
\(\Rightarrow\left(6x-5\right)\left(6x+5\right)-x\left(6x-5\right)=0\)
\(\Rightarrow\left(6x-5\right)\left(6x+5-x\right)=0\)
\(\Rightarrow\left(6x-5\right)\left(5x+5\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{5}{6}\\x=-1\end{array}\right.\)
Vậy pt có nghiệm là x = 5 / 6 ; x = - 1
(3x + 1)2 - (3x - 1).(3x + 1) = 1
<=> (3x + 1).[(3x + 1) - (3x - 1)] = 1
<=> (3x + 1).(3x + 1 - 3x + 1) = 1
<=> (3x + 1).2 = 1
<=> 3x + 1 = 1/2
<=> 3x = -1/2
<=> x = -1/6
Vậy S = {-1/6}.
36x2 - 25 - x.(6x - 5) = 0
<=> (36x2 - 25) - x.(6x - 5) = 0
<=> [(6x)2 - 52] - x.(6x - 5) = 0
<=> (6x - 5).(6x + 5) - x.(6x - 5) = 0
<=> (6x - 5).(6x + 5 - x) = 0
<=> (6x - 5).(5x + 5) = 0
<=> 5.(6x - 5).(x + 1) = 0
<=> 6x - 5 = 0 hoặc x + 1 = 0
<=> x = 5/6 hoặc x = -1
Vậy S = {-1; 5/6}.
1/
-x^3 -5x^2 + 4x +4
=> x1 =-5.5877............
x2=1.1895.............
x3=-0.6018............
a, (2x-5)2-(x+2)2=0
\(\Leftrightarrow\left(2x-5-x-2\right)\left(2x-5+x+2\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(3x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\3x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=1\end{matrix}\right.\)\(\)
b, \(\left(x+5\right)\left(4x-1\right)+x^2-25=0\)
\(\Leftrightarrow\left(x+5\right)\left(4x-1\right)+\left(x+5\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(4x-1+x-5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(5x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\5x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{6}{5}\end{matrix}\right.\)
(x2 - 25)2 - (x - 5)2 = 0
<=> (x2 - 25 + x - 5)(x2 - 25 - x + 5) = 0
<=> (x2 + x - 30)(x2 - x - 20) = 0
<=> (x2 + 6x - 5x - 30)(x2 + 4x - 5x - 20) = 0
<=> [x(x + 6) - 5(x + 6)].[x(x + 4) - 5(x + 4)] = 0
<=> (x + 6)(x + 4)(x - 5)2 = 0
<=> x = -6 hoặc x = -4 hoặc x = 5