\(\sqrt{2x-3}\) 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2016

Giải các phương trình và hệ phương trình:

a) x2 - \(2\sqrt{5}\)x + 5 = 0

Ta có: x2 - \(2\sqrt{5}\)x + 5 = 0 <=> ( x = \(\sqrt{5}\) )2 = 0 <=> x - \(\sqrt{5}\) = 0 <=> x = \(\sqrt{5}\)

Vậy phương trình đã cho có tập nghiệm S = ( \(\sqrt{5}\) )

24 tháng 7 2016

c) \(\begin{cases}2x+5y=-1\\3x-2y=8\end{cases}\) <=> \(\begin{cases}6x+15y=-3\\6x-4y=16\end{cases}\) <=> \(\begin{cases}19y=-19\\3x-2y=8\end{cases}\) <=> \(\begin{cases}y=-1\\3x-2.\left(-1\right)=8\end{cases}\) <=> \(\begin{cases}y=-1\\x=2\end{cases}\)

Vậy hệ phương trình có 1 nghiệm duy nhất (x ; y) = (2 ; -1)

23 tháng 8 2016

pt đã cho \(\Leftrightarrow x^2+x+2-\left(2x+3\right)\sqrt{x^2+x+2}+x^2+x-1=-\left(2x+3\right)\)

\(\Leftrightarrow x^2+x+2-\left(2x+3\right)\sqrt{x^2+x+2}+x^2+3x+2=0\)

Đặt \(t=\sqrt{x^2+x+2}\left(t\ge0\right)\)  pt trở thành

\(t^2-\left(2x+3\right)t+x^2+3x+2=0\) (*)

pt (*) có biệt thức \(\Delta=\left(2x+3\right)^2-4\left(x^2+3x+2\right)=1\)

\(t_1=\frac{2x+3+1}{2}=x+2\) \(\Leftrightarrow\begin{cases}x\ge-2\\\sqrt{x^2+x+2}=x+2\end{cases}\Leftrightarrow x=-\frac{2}{3}}\)

 \(t_2=\frac{2x+3-1}{2}=x+1\) 

\(\Leftrightarrow\begin{cases}x\ge-1\\\sqrt{x^2+x+2}=x+1\end{cases}\Leftrightarrow x=1}\)

 

 

29 tháng 10 2016

x=1

x=-0,(6)

26 tháng 3 2020
https://i.imgur.com/dl21EBZ.jpg