K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2020

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$###############################@@@@@@@@@@@@@@@@@@@@@@@$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$###############################@@@@@@@@@@@@@@@@@@@@@@@

12 tháng 7 2020

\(x^2-4x+\frac{1}{x+1}+2=-x^2-5x+\frac{1}{2x+1}\left(ĐK:x\ne-1;-\frac{1}{2}\right)\)

\(< =>x^2-4x+\frac{1}{x+1}+2+x^2+5x-\frac{1}{2x+1}=0\)

\(< =>2x^2+x+\frac{2x+3}{x+1}-\frac{1}{2x+1}=0\)

\(< =>2x^2+x=\frac{1}{2x+1}-\frac{2x+3}{x+1}\)

\(< =>2x^2+x=\frac{x+1-\left(2x+1\right)\left(2x+1\right)+4x+2}{\left(x+1\right)\left(x+1\right)+x^2+x}\)

\(< =>2x^2+x=\frac{x+1-4x^2-4x-1+4x+2}{x^2+2x+1+x^2+x}\)

\(< =>2x^2+x=\frac{x-4x^2+2}{2x^2+3x+1}\)

\(< =>\left(2x^2+x\right)^2+\left(2x+1\right)^2x=x-4x^2+2\)

\(< =>4x^4+8x^3+9x^2-2=0\)

nhờ bạn nào đó giải giúp ạ

12 tháng 2 2020

+) If \(x\ge1\)then\(\left|x-1\right|=x-1\)

Equation becomes \(x^2-3x+2+x-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)+\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)(satisfy)

+) If \(x< 1\)then\(\left|x-1\right|=1-x\)

Equation becomes \(x^2-3x+2+1-x=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\left(unsatisfactory\right)\\x=3\left(unsatisfactory\right)\end{cases}}\)

So x = 1

12 tháng 2 2020

câu b bạn ghi = công thức dc ko, khó nhìn quá

17 tháng 1 2018

Thực ra 2 câu đầu rất dễ nha bạn ^^!

1) x+ 2x3 + x2 + 2x + 1 =0 <=> x3(x+2)+x(x+2)+1 = 0

<=> (x3+x)(x+2) + 1=0

1>0

=> (x3+x)(x+2) + 1=0 <=> (x3+x)(x+2) = 0

<=>\(\orbr{\begin{cases}^{x^3+x=0}\\x+2=0\end{cases}}\)<=>\(\orbr{\begin{cases}^{x\left(x^2+1\right)=0}\\x=-2\end{cases}}\) <=>\(\orbr{\begin{cases}^{x=0}\\x=-2\end{cases}}\)

b)

x3+1=\(2\sqrt[3]{2x-1}\)

<=> x^3 - 1 = 2(\(\sqrt[3]{2x-1}\) -1)

<=> (x-1)(x2+x+1) = \(\frac{4\left(x-1\right)}{\sqrt[3]{\left(2x-1\right)^2}+\sqrt[3]{2x-1}+1}\)

<=> (x-1)[(x2+x+1) - \(\frac{1}{\sqrt[3]{\left(2x-1\right)^2}+\sqrt[3]{2x-1}+1}\) ] =0

<=> x=1

17 tháng 1 2018

xin lỗi bạn mình ghi nhầm câu 1, mai mình sẽ sửa lại

26 tháng 2 2019

ĐKXĐ:x\(\ne\)-1

pt<=>(x+2)4=16<=>x=\(\mp\)2(tm)

Vậy S=-2;2