\(\dfrac{1}{x}\) = x2 + \(\dfrac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2017

An Lê Khánh haizzzzz \(x+\dfrac{1}{x}=x\left(x+\dfrac{1}{x}\right)\)

\(\Leftrightarrow1=x\)

30 tháng 12 2017

\(x+\dfrac{1}{x}=x^2+\dfrac{1}{x^2}\\ \Rightarrow\dfrac{x^2+1}{x}=\dfrac{x^4+1}{x^2}\\ \Rightarrow\dfrac{x^3+x}{x^2}=\dfrac{x^4+1}{x^2}\\ \Rightarrow x^3+x=x^4+1\\ \Rightarrow x^4+1-x^3-x=0\\ \Rightarrow\left(x^4-x^3\right)-\left(x-1\right)=0\\ \Rightarrow x^3\left(x-1\right)-\left(x-1\right)=0\\ \Rightarrow\left(x-1\right)\left(x^3-1\right)=0\\ \Rightarrow\left(x-1\right)\left(x-1\right)\left(x^2+x+1\right)=0\\ \Rightarrow\left(x-1\right)^2\left(x^2+x+1\right)=0\\ \Rightarrow\left(x-1\right)^2=0\\ \Rightarrow x=1\)

2: \(\Leftrightarrow\left(x-4\right)\left(x+1\right)+\left(x+4\right)\left(x-1\right)=2\left(x-1\right)\left(x+1\right)\)

=>x^2-3x-4+x^2+3x-4=2x^2-2

=>2x^2-8=2x^2-2(loại)

3: \(\Leftrightarrow\left(x^2-x\right)\left(x-3\right)+x^2\left(x+3\right)=-7x^2+3x\)

=>x^3-3x^2-x^2+3x+x^3+3x^2+7x^2-3x=0

=>2x^3+6x^2=0

=>2x^2(x+3)=0

=>x=0(nhận) hoặc x=-3(loại)

13 tháng 4 2018

\(\dfrac{x+1}{2008}+\dfrac{x+2}{2007}+\dfrac{x+3}{2006}=\dfrac{x+4}{2005}+\dfrac{x+5}{2004}+\dfrac{x+6}{2003}\)

\(\dfrac{x+1}{2008}+1+\dfrac{x+2}{2007}+1+\dfrac{x+3}{2006}+1=\dfrac{x+4}{2005}+1+\dfrac{x+5}{2004}+1+\dfrac{x+6}{2003}+1\)

\(\dfrac{x+2009}{2008}+\dfrac{x+2009}{2007}+\dfrac{x+2009}{2006}=\dfrac{x+2009}{2005}+\dfrac{x+2009}{2004}+\dfrac{x+2009}{2003}\)

\(\dfrac{x+2009}{2008}+\dfrac{x+2009}{2007}+\dfrac{x+2009}{2006}-\dfrac{x+2009}{2005}-\dfrac{x+2009}{2004}-\dfrac{x+2009}{2003}=0\)

\(\left(x+2009\right)\left(\dfrac{1}{2008}+\dfrac{1}{2007}+\dfrac{1}{2006}-\dfrac{1}{2005}-\dfrac{1}{2004}-\dfrac{1}{2003}\right)=0\)

⇔ x+2009=0

⇔ x=-2009

vậy x=-2009 là nghiệm của pt

13 tháng 4 2018

a) ( x2 + x )2 + 4( x2 + x ) = 12

<=> ( x2 + x )2 + 4( x2 + x ) + 4 - 16 = 0

<=> ( x2 + x + 2)2 - 16 = 0

<=> ( x2 + x + 2 + 4)( x2 + x + 2 - 4) = 0

<=> ( x2 + x + 6 )( x2 + x - 2) = 0

Do : x2 + x + 6

= x2 + 2.\(\dfrac{1}{2}x+\dfrac{1}{4}+6-\dfrac{1}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}\)\(\dfrac{23}{4}\) > 0 ∀x

=> x2 + x - 2 = 0

<=> x2 - x + 2x - 2 = 0

<=> x( x - 1) + 2( x - 1) = 0

<=> ( x - 1)( x + 2 ) = 0

<=> x = 1 hoặc : x = - 2

KL.....

b) Kuroba kaito làm rùi nhé hihi

22 tháng 2 2019

1, \(\dfrac{x-3}{2011}+\dfrac{x-2}{2012}=\dfrac{x-2012}{2}+\dfrac{x-2011}{3}\\ \\ < =>\dfrac{x-3}{2011}-1+\dfrac{x-2}{2012}-1=\dfrac{x-2012}{2}-1+\dfrac{x-2011}{3}-1\\ \\ < =>\dfrac{x-2014}{2011}+\dfrac{x-2014}{2012}-\dfrac{x-2014}{2}-\dfrac{x-2014}{3}=0\\ \\ < =>\left(x-2014\right).\left(\dfrac{1}{2011}+\dfrac{1}{2012}-\dfrac{1}{2}-\dfrac{1}{3}\right)=0\\ \\ < =>x-2014=0< =>x=2014\)

2, \(x^2+1=x\\ \\ < =>x^2-x+1=0\\ \\ < =>x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=0\\ \\ < =>\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\)

có vế trái luôn dương, vế phải = 0 => vô nghiệm

27 tháng 3 2017

Ta có: 8\(\left(x+\dfrac{1}{x}\right)^2\)+4\(\left(x^2+\dfrac{1}{x^2}\right)^2\)\(\left(x+\dfrac{1}{x}\right)^2\)=(x+4)2

ĐKXĐ: x khác 0

<=>8\(\left(x+\dfrac{1}{x}\right)^2\)+4\(\left(x^2+\dfrac{1}{x^2}\right)\)\(\left(x^2+\dfrac{1}{x^2}-x^2-2-\dfrac{1}{x^2}\right)\)=(x+4)2

<=>8\(\left(x+\dfrac{1}{x}\right)^2-8\left(x^2+\dfrac{1}{x^2}\right)=\left(x+4\right)^2\)

<=>8\(\left(x^2+2+\dfrac{1}{x^2}-x^2-\dfrac{1}{x^2}\right)\)=(x+4)2

=>(x+4)2=16

Vậy có 2 TH:

+) x+4=4 => x=0(KTMĐKXĐ)

+)x+4=-4 => x=-8(TMĐKXĐ)

Vậy tập nghiệm của phương trình S={-8}

27 tháng 3 2017

???

12 tháng 3 2018

bài 1:

b,\(\dfrac{x+2}{x}=\dfrac{x^2+5x+4}{x^2+2x}+\dfrac{x}{x+2}\)(ĐKXĐ:x ≠0,x≠-2)

<=>\(\dfrac{\left(x+2\right)^2}{x\left(x+2\right)}=\dfrac{x^2+5x+4}{x\left(x+2\right)}+\dfrac{x^2}{x\left(x+2\right)}\)

=>\(x^2+4x+4=x^2+5x+4+x^2\)

<=>\(x^2-x^2-x^2+4x-5x+4-4=0\)

<=>\(-x^2-x=0< =>-x\left(x+1\right)=0< =>\left[{}\begin{matrix}x=0\left(loại\right)\\x+1=0< =>x=-1\left(nhận\right)\end{matrix}\right.\)

vậy...............

d,\(\left(x+3\right)^2-25=0< =>\left(x+3-5\right)\left(x+3+5\right)=0< =>\left(x-2\right)\left(x+8\right)=0< =>\left[{}\begin{matrix}x-2=0\\x+8=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\)

vậy............

bài 3:

g,\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{x^2-x-2}\)(ĐKXĐ:x khác -1,x khác 2)

<=>\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{x^2-2x+x-2}\)

<=>\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{x\left(x-2\right)+\left(x-2\right)}\)

<=>\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}\)

<=>\(\dfrac{4\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}-\dfrac{2\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}\)

=>\(4x-8-2x-2=x+3\)

<=>\(x=13\)

vậy..............

mấy ý khác bạn làm tương tụ nhé

chúc bạn học tốt ^ ^

a)\(\dfrac{3}{x^2+5x+4}+\dfrac{2}{x^2+10x+24}=\dfrac{4}{3}+\dfrac{9}{x^2+3x-18}\left(đkxđ:x\ne-1;-4;-6;3\right)\)

\(\Leftrightarrow\dfrac{3}{\left(x+1\right)\left(x+4\right)}+\dfrac{2}{\left(x+4\right)\left(x+6\right)}=\dfrac{4}{3}+\dfrac{9}{\left(x+6\right)\left(x-3\right)}\)

\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+6}=\dfrac{4}{3}+\dfrac{1}{x-3}-\dfrac{1}{x+6}\)

\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{4}{3}+\dfrac{1}{x-3}\)

\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x-3}=\dfrac{4}{3}\)

\(\Leftrightarrow\dfrac{-4}{\left(x+1\right)\left(x-3\right)}=\dfrac{4}{3}\)

\(\Leftrightarrow\left(x+1\right)\left(3-x\right)=3\)

\(\Leftrightarrow2x-x^2+3=3\)

\(\Leftrightarrow x^2-2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\left(tm\right)\)

b)\(x^2-y^2+2x-4y-10=0\)

\(\Leftrightarrow x^2+2x+1-y^2-4y-4-7=0\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)

\(\Leftrightarrow\left(x-y-1\right)\left(x+y+3\right)=7\)

Mà x,yEN*=>x-y-1<x+y+3

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-y-1=1\\x+y+3=7\end{matrix}\right.\\\left\{{}\begin{matrix}x-y-1=-7\\x+y+3=-1\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

Vậy ...

29 tháng 1 2018

Để mình giúp nha

\(x^2+\dfrac{1}{x^2}-\dfrac{9}{2}\left(x+\dfrac{1}{x}\right)+7=0\)

ĐKXD: x\(\ne0\)

\(\Leftrightarrow x^2+2+\dfrac{1}{x^2}-\dfrac{9}{2}\left(x+\dfrac{1}{x}\right)+5=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2-\dfrac{9}{2}\left(x+\dfrac{1}{x}\right)+5=0\)

Đặt \(a=x+\dfrac{1}{x}\) khi đó phương trình trở thành

\(a^2-\dfrac{9}{2}a+5=0\)

\(\Leftrightarrow\left(a\right)^2-2.a.\dfrac{9}{4}+\left(\dfrac{9}{4}\right)^2-\dfrac{81}{16}+5=0\)

\(\Leftrightarrow\left(a+\dfrac{9}{4}\right)^2=\dfrac{1}{16}\)

\(\Leftrightarrow\left[{}\begin{matrix}a-\dfrac{9}{4}=\dfrac{1}{4}\\a-\dfrac{9}{4}=-\dfrac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a=\dfrac{5}{2}\\a=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=\dfrac{5}{2}\\x+\dfrac{1}{x}=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x^2+1}{x}=\dfrac{5}{2}\\\dfrac{x^2+1}{x}=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-\dfrac{5}{2}x+1=0\\x^2-2x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x\right)^2-2.x.\dfrac{5}{4}+\left(\dfrac{5}{4}\right)^2-\dfrac{25}{16}+1=0\\\left(x-1\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-\dfrac{5}{4}\right)^2-\dfrac{9}{16}=0\\x=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(n\right)\\x=\dfrac{1}{2}\left(n\right)\\x=1\left(n\right)\end{matrix}\right.\)

Vậy S=\(\left\{1;2;\dfrac{1}{2}\right\}\)

30 tháng 1 2018

cảm ơn Otasaka Yu

22 tháng 3 2018

1a)\(\left(x+2\right)^2-6\left(x+2\right)\le x^2-4\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\ge\left(x+2\right)\left(x+2-6\right)\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x+2\right)\left(x-4\right)\ge0\)

\(\Leftrightarrow\left(x+2\right)\left(x-2-x+4\right)\ge0\)

\(\Leftrightarrow\left(x+2\right)\cdot2\ge0\)

\(\Leftrightarrow x+2\ge0\)

\(\Leftrightarrow x\ge-2\)

b)\(-\dfrac{2}{x-1}>0\left(đkxđ:x\ne1\right)\)

\(\Leftrightarrow\dfrac{2}{x-1}< 0\)

\(\Leftrightarrow x-1< 0\)

\(\Leftrightarrow x< 1\)

22 tháng 3 2018

1)

a) (x+2)2 - 6(x+2) \(\le\) x2 - 4

<=> (x+2).(x+2 - 6) \(\le\) (x+2)(x-2)

<=> x2 + 2x - 6x + 2x + 4 - 12 \(\le\) x2 - 2x +2x - 4

<=> x2 - x2 + 2x + 2x - 6x + 2x - 2x \(\le\) 12 - 4 - 4

<=> -2x \(\le\) 4

<=> x \(\ge\) -2

Vậy bpt có nghiệm x \(\ge\) -2

b) Để \(\dfrac{-2}{x-1}\) nhận giá trị không âm

=>\(\dfrac{-2}{x-1}\) \(\ge\) 0

<=> -2 . (x-1) \(\ge\) 0

<=> -2x + 2 \(\ge\) 0

<=> -2x \(\ge\) -2

<=> x \(\le\) 1

Vậy với x \(\le\) 1 thì biểu thức \(\dfrac{-2}{x-1}\) nhận giá trị không âm.

2)

a) \(|x+1|\) = 2x - 1

+) Nếu x+1 \(\ge\) 0 => x \(\ge\) -1 thì phương trình :

x + 1 = 2x -1

<=> -x = -2

<=> x = 2 (thỏa mãn)

+) Nếu x+1 < 0 => x < -1 thì phương trình :

-(x + 1) = 2x - 1

<=> -x -1 = 2x -1

<=> -3x = 0

<=> x = 0 (không thỏa mãn)

Vậy phương trình có nghiệm x = 2.

c) \(\dfrac{x+1}{x-2}\) - \(\dfrac{5}{x+2}\) = \(\dfrac{12}{x^2-4}\)+ 1 (ĐKXĐ: x \(\ne\) \(\pm\) 2)

<=>\(\dfrac{\left(x+1\right).\left(x+2\right)-5.\left(x-2\right)}{x^2-4}\) = \(\dfrac{12+x^2-4}{x^2-4}\)

<=> \(\dfrac{x^2-2x+12}{x^2-4}\) = \(\dfrac{x^2+8}{x^2-4}\)

<=> x2 - 2x +12 = x2 +8

<=> -2x = 8-12

<=> x = 2 ( không thỏa mãn ĐKXĐ)

Vậy phương trình vô nghiệm.haha