Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>(x-3)(x+1)=0
=>x=3 hoặc x=-1
b: =>x(x-3)=0
=>x=0 hoặc x=3
c: =>(x-5)(x+1)=0
=>x=5 hoặc x=-1
d: =>5x^2+7x-5x-7=0
=>(5x+7)(x-1)=0
=>x=1 hoặc x=-7/5
e: =>x^2-4=0
=>x=2 hoặc x=-4
h: =>x^2-4x+4-3=0
=>(x-2)^2=3
=>\(x=2\pm\sqrt{3}\)
a: =>3x^2-3x-2x+2=0
=>(x-1)(3x-2)=0
=>x=2/3 hoặc x=1
b: =>2x^2=11
=>x^2=11/2
=>\(x=\pm\dfrac{\sqrt{22}}{2}\)
c: Δ=5^2-4*1*7=25-28=-3<0
=>PTVN
f: =>6x^4-6x^2-x^2+1=0
=>(x^2-1)(6x^2-1)=0
=>x^2=1 hoặc x^2=1/6
=>\(\left[{}\begin{matrix}x=\pm1\\x=\pm\dfrac{\sqrt{6}}{6}\end{matrix}\right.\)
d: =>(5-2x)(5+2x)=0
=>x=5/2 hoặc x=-5/2
e: =>4x^2+4x+1=x^2-x+9 và x>=-1/2
=>3x^2+5x-8=0 và x>=-1/2
=>3x^2+8x-3x-8=0 và x>=-1/2
=>(3x+8)(x-1)=0 và x>=-1/2
=>x=1
PT 2
\(\Leftrightarrow\dfrac{3}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}+\dfrac{2x}{\left(x-2\right)\left(x-3\right)}-\dfrac{1}{\left(x-1\right)\left(x-2\right)}=0\) ( \(x\ne1;x\ne2;x\ne3\))
\(\Leftrightarrow\dfrac{3+2x^2-2x-x+3}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=0\)
\(\Rightarrow2x^2-3x+6=0\)
=> PT vô nghiệm.
\(\Leftrightarrow\sqrt[3]{3x+1}+\sqrt[3]{5-x}=\sqrt[3]{4x-3}+\sqrt[3]{9-2x}\)
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{3x+1}=a\\\sqrt[3]{5-x}=b\\\sqrt[3]{4x-3}=c\\\sqrt[3]{9-2x}=d\end{matrix}\right.\)
Ta được: \(\left\{{}\begin{matrix}a+b=c+d\\a^3+b^3=c^3+d^3\end{matrix}\right.\)
TH1:
Nếu \(a+b=c+d=0\Leftrightarrow\sqrt[3]{3x+1}+\sqrt[3]{5-x}=\sqrt[3]{4x-3}+\sqrt[3]{9-2x}=0\)
\(\Rightarrow\left\{{}\begin{matrix}3x+1=-\left(5-x\right)\\4x-3=-\left(9-2x\right)\end{matrix}\right.\) \(\Rightarrow x=-3\)
TH2: nếu \(a+b=c+d\ne0\)
\(a+b=c+d\Leftrightarrow\left(a+b\right)^3=\left(c+d\right)^3\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=c^3+d^3+3cd\left(c+d\right)\)
\(\Leftrightarrow ab\left(a+b\right)=cd\left(c+d\right)\) (do \(a^3+b^3=c^3+d^3\))
\(\Leftrightarrow ab=cd\) (do \(a+b=c+d\ne0\))
\(\Leftrightarrow\sqrt[3]{\left(3x+1\right)\left(5-x\right)}=\sqrt[3]{\left(4x-3\right)\left(9-2x\right)}\)
\(\Leftrightarrow\left(3x+1\right)\left(5-x\right)=\left(4x-3\right)\left(9-2x\right)\)
\(\Leftrightarrow5x^2-28x+32=0\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{8}{5}\end{matrix}\right.\)
Vậy \(x=\left\{-3;4;\dfrac{8}{5}\right\}\)
Cái cuối này căn bậc 2 hay căn bậc 3 em? Căn bậc 2 thì hơi nghi ngờ về khả năng giải được của pt này.
làm tạm câu này vậy
a/\(\left(x^2-x+1\right)^4+4x^2\left(x^2-x+1\right)^2=5x^4\)
\(\Leftrightarrow\left(x^2-x+1\right)^4+4x^2\left(x^2-x+1\right)+4x^4=9x^4\)
\(\Leftrightarrow\left\{\left(x^2-x+1\right)^2+2x^2\right\}=\left(3x^2\right)^2\)
\(\Leftrightarrow\left(x^2-x+1\right)^2+2x^2=3x^2\)(vì 2 vế đều không âm)
\(\Leftrightarrow\left(x^2-x+1\right)=x^2\)
\(\Leftrightarrow\left|x\right|=x^2-x+1\)\(\left(x^2-x+1=\left(x-\frac{1}{4}\right)^2+\frac{3}{4}>0\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x=x^2-x+1\\-x=x^2-x+1\end{cases}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\\x^2+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x^2+1=0\left(vo.nghiem\right)\end{cases}}}\)
Vậy...
Có |x-1| + |2x-3| + |3x+5|+|4x-7|+11x-8 = 0 (1)
<=> |x-1|+|2x-3|+|3x-5|+|4x-7| = 8-11x
Có \(\left|x-1\right|\ge0;\left|2x-3\right|\ge0;\left|3x-5\right|\ge0;\left|4x-7\right|\ge0\)
\(\Rightarrow\left|x-1\right|+\left|2x-3\right|+\left|3x-5\right|+\left|4x-7\right|\ge0\)
\(\Rightarrow8-11x\ge0\Leftrightarrow x\le\frac{8}{11}\)
\(\Rightarrow x-1< 0;2x-3< 0;3x-5< 0;4x-7< 0\)
=>\(\Rightarrow\hept{\begin{cases}\left|x-1\right|=1-x;\left|2x-3\right|=3-2x\\\left|3x-5\right|=5-3x;\left|4x-7\right|=7-4x\end{cases}}\)
Thay vào (1) có :
\(1-x+3-2x+5-3x+7-4x+11x-8=0\)
\(\Leftrightarrow x+8=0\Leftrightarrow x=-8\)( thỏa mãn điều kiện \(x\le\frac{8}{11}\))
Vậy x = - 8
Tích cho mk nhoa !!!! ~~