K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 4 2019

Nhận thấy \(\left\{{}\begin{matrix}x=1\\x=2\end{matrix}\right.\) là 2 nghiệm của pt

- Với \(x< 1\Rightarrow2-x>1\Rightarrow\left(x-2\right)^{2010}=\left(2-x\right)^{2010}>1\)

\(\left(x-1\right)^{2010}>0\Rightarrow VT>1\Rightarrow VT>VP\Rightarrow\) pt vô nghiệm

- Với \(x>2\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)^{2010}>0\\x-1>1\Rightarrow\left(x-1\right)^{2010}>1\end{matrix}\right.\)

\(\Rightarrow VT>1\Rightarrow VT>VP\Rightarrow\) pt vô nghiệm

- Với \(1< x< 2\) viết lại pt dưới dạng: \(\left(x-1\right)^{2010}+\left(2-x\right)^{2010}=1\)

\(\Rightarrow\left\{{}\begin{matrix}0< x-1< 1\Rightarrow\left(x-1\right)^{2010}< x-1\\0< 2-x< 1\Rightarrow\left(2-x\right)^{2010}< 2-x\end{matrix}\right.\)

\(\Rightarrow\left(x-1\right)^{2010}+\left(2-x\right)^{2010}< x-1+2-x=1\)

\(\Rightarrow VT< 1\Rightarrow VT< VP\Rightarrow\) pt vô nghiệm

Vậy pt có 2 nghiệm \(\left\{{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

2 tháng 4 2019

Cam sa hae yo

18 tháng 2 2018

a) thay m=1 vvào rồi giải như giải ptrinh bậc hai bình thường

b)chứng minh phương trrình (1) luôn có hai nghiệm phân biệt(tìm đenta, nếu đenta lớn hơn 0 thì pt có 2 nghiệm phân biệt)

Dựa vào hệ thức viet để giải một pt của hệ (thường thì là pt cộng)với pt đã cho ở đầu bài

thay lần lượt từng kết quả vào để tìm m

c)mk vẫn còn chưa thành thạo dạng này lắm nên chưa biết làm.

31 tháng 5 2019

thôi khỏi nha các bạn mình làm được rồi

10 tháng 8 2019

ĐK:....

Đặt \(\sqrt{x+2010}=a\ge0\) thì \(a^2-x=2010\)

Kết hợp đề bài ta có hệ: \(\left\{{}\begin{matrix}x^2+a=2010\\a^2-x=2010\end{matrix}\right.\)

Trừ theo vế hai pt của hệ ta được:

\(\left(x^2-a^2\right)+\left(a+x\right)=0\)

\(\Leftrightarrow\left(x-a\right)\left(x+a\right)+\left(x+a\right)=0\)

\(\Leftrightarrow\left(x+a\right)\left(x-a+1\right)=0\)

Auto làm nốt. P/s: Em làm đúng ko ta?:V

24 tháng 5 2016

cách 1:Viết thành hằng đẳng thức

\(\Leftrightarrow x^2+x+\frac{1}{4}=x+2010-\sqrt{x+2010}+\frac{1}{4}\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=\left(\sqrt{x+2010}-\frac{1}{2}\right)^2\)

tới đây dễ rùi nhé

cách 2:\(ĐKXĐ:x\ge-2010\)

đặt \(\sqrt{x+2010}=t\left(t>0\right)\)

\(\Rightarrow x^2+t=t^2-x\)

\(\Rightarrow x^2-t^2+x+t=0\)

\(\Rightarrow\left(x+t\right)\left(x-t+1\right)=0\)

tự làm tiếp

cách 3:\(\Leftrightarrow\sqrt{x+2010}+x^2=2010\)

\(\Leftrightarrow\sqrt{x+2010}+x^2-2010=0\)

\(\Leftrightarrow x-\sqrt{2010-\sqrt{x+2010}}=0\)

\(\Leftrightarrow\sqrt{2010-\sqrt{x+2010}}+x=0\)

Đến đây tách căn ra ta đc 2 TH (1) và (2)

\(\Leftrightarrow2x+\sqrt{11}\sqrt{17}\sqrt{43}-1=0\left(1\right)\)

\(\Leftrightarrow2x+3\sqrt{19}\sqrt{47}+1=0\)

Tự làm tiếp

\(\Leftrightarrow2x-\sqrt{11}\sqrt{17}\sqrt{43}-1=0\left(2\right)\)

\(\Leftrightarrow2x-3\sqrt{19}\sqrt{47}+1=0\)

Tự làm tiếp nhé

23 tháng 11 2016

Từ giả thiết ta có \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow x+y=0\) hoặc \(y+z=0\) hoặc \(z+x=0\)

+) Nếu x + y = 0 hoặc z + x = 0 thì ta không tính được giá trị biểu thức.

+) Nếu y + z = 0 thì \(y=-z\Leftrightarrow y^{2017}=-z^{2017}\Leftrightarrow y^{2017}+z^{2017}=0\)

Suy ra \(\left(x^{2016}+y^{2016}\right)\left(y^{2017}+z^{2017}\right)\left(x^{2018}+z^{2018}\right)=0\)