K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2017

ĐKXĐ: x \(\ge\) 1

Đặt \(\sqrt{x+2}=a;\sqrt{x-1}=b\left(a>0;b\ge0\right)\)

\(\Rightarrow ab=\sqrt{\left(x-1\right)\left(x+2\right)}=\sqrt{x^2+x-2};2x+4=2a^2\)

pt <=> 2a2 = 3a + ab

<=> 2a2 - 3a - ab = 0

<=> 2a2 - a(b + 3) = 0 (đoạn này bạn có thể phân tích thành nhân tử để làm)

Coi đây là 1 pt bậc 2 ẩn a có \(\Delta=\left(b+3\right)^2\Rightarrow\sqrt{\Delta}=b+3\) (vì b + 3 > 0)

\(\Rightarrow a_1=\dfrac{b+3+b+3}{4};a_2=\dfrac{b+3-b-3}{4}\)

\(\Leftrightarrow a=\dfrac{b+3}{2}\) (vì a > 0 nên nghiệm a2 không thỏa mãn)

\(\Leftrightarrow2a=b+3\)

\(\Leftrightarrow2\sqrt{x+2}=\sqrt{x-1}+3\)

\(\Leftrightarrow4\left(x+2\right)=x+8+6\sqrt{x-1}\)

\(\Leftrightarrow x=2\sqrt{x-1}\)

\(\Leftrightarrow x-1-2\sqrt{x-1}+1=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2=0\)

\(\Leftrightarrow\sqrt{x-1}-1=0\)

\(\Leftrightarrow x=2\left(TM\right)\)

Vậy ...

4 tháng 10 2017

Điều kiện tự làm nhé.

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x+2\right)}+3\sqrt{x+2}-2\left(x+2\right)=0\)

\(\Leftrightarrow\sqrt{x+2}\left(\sqrt{x-1}+3-2\sqrt{x+2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+2}=0\left(1\right)\\\sqrt{x-1}+3-2\sqrt{x+2}=0\left(2\right)\end{matrix}\right.\)

Từ (1) \(\Rightarrow x=-2\)

Từ (2) \(\Rightarrow2\sqrt{x+2}-\sqrt{x-1}=3\)

Cái này đơn giản tự giải nha.

\(\Rightarrow x=2\)

4 tháng 10 2017

\(\sqrt{\left(x+2\right)\left(x-1\right)}+3\sqrt{x+2}=2\left(x+2\right)\)(đk bn tự xd nhé)

\(\Leftrightarrow\sqrt{x+2}\left(\sqrt{x-1}+3-2\sqrt{x+2}\right)\)=0

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\\sqrt{x-1}+3=2\sqrt{x+2}\left(1\right)\end{cases}}\)

giai (1) bn se co x=2 kl x=+-2

12 tháng 8 2017

toán lớp 9 thì ai mà biết chỉ lớp 5 thôi

đáp án là : 0 bít !

12 tháng 8 2017

sống bớt xàm đi bạn trẻ

10 tháng 8 2017

\(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)

13 tháng 8 2017

\(4x^2-4-3x=\sqrt[3]{x^2\left(x^2-1\right)}\)

\(\Leftrightarrow4\left(x-1\right)\left(x+1\right)-3x=\sqrt[3]{x^2\left(x-1\right)\left(x+1\right)}\)

dat \(\left(x-1\right)\left(x+1\right)=y\)

\(4y-3x=\sqrt[3]{x^2y}\)

\(\Leftrightarrow\left(4y-3x\right)^3=x^2y\)

\(\Leftrightarrow64y^3-144y^2x+108yx^2-27x^3=x^2y\)

\(\Leftrightarrow64y^3-144y^2x+107yx^2-27x^3=0\)

\(\Leftrightarrow64y^3-64y^2x-80y^2x+80x^2y+27x^2y-27x^3=0\)

\(\Leftrightarrow\left(y-x\right)\left(64y^2-80xy+27x^2\right)=0\)

de thay \(64y^2-80xy+27x^2=\left(8y\right)^2-2.8y.5x+25x^2+2x^2=\left(8y-5x\right)^2+2x^2>0\)

\(\Rightarrow y=x\)hay \(\left(x-1\right)\left(x+1\right)=x\Rightarrow x^2-x-1=0\) 

\(\left(x-\frac{1}{2}\right)^2-\frac{5}{4}=0\Rightarrow\left(x-\frac{1}{2}\right)^2=\frac{5}{4}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{5}+1}{2}\\x=\frac{-\sqrt{5}+1}{2}\end{cases}}\)

câu b tương tự nhé bạn

\(\Leftrightarrow\left(3-x\right)\sqrt{x-1}+\sqrt{5-2x}=\sqrt{\left[\left(x-3\right)^2+1\right]\left(4-x\right)}\)

đặt 3-x=a;\(\sqrt{x-1}=b;\sqrt{5-2x}=c\Rightarrow b^2+c^2=4-x\)

\(\Leftrightarrow ab+c=\sqrt{\left(a^2+1\right)\left(b^2+c^2\right)}\)

<=>a2b2+2abc+c2=a2b2+b2+a2c2+c2

<=>b2-2abc+a2c2=0

<=>(b-ac)2=0

<=>b=ac

đến đây thì dễ rồi

14 tháng 7 2017

\(\sqrt{x+8}=\sqrt{3x+2}+\sqrt{x+3}\) dkxd \(\left\{{}\begin{matrix}x\ge-8\\x\ge\\x\ge-\dfrac{2}{3}\end{matrix}\right.-3\)=>x\(\ge\)\(\dfrac{-2}{3}\)

\(x+8=3x+2+x+3+2\sqrt{\left(3x+2\right)\left(x+3\right)}\)

\(x+8=4x+5+2\sqrt{\left(3x+2\right)\left(x+3\right)}\)

\(x+8-4x-5=2\sqrt{\left(3x+2\right)\left(x+3\right)}\)

-3x+3=\(2\sqrt{\left(3x+2\right)\left(x+3\right)}\)

\(\left\{{}\begin{matrix}-3\left(x-3\right)\ge0\\\left(-3x+3\right)^2=4.\left(3x+2\right)\left(x+3\right)\end{matrix}\right.\)

Chắc tới đây bạn làm đc rồi nhỉ

1 tháng 9 2017

\(\frac{\sqrt{x}}{1+\sqrt{1-x}}=x^2-2x+2\Leftrightarrow\frac{\sqrt{x}-1}{1+\sqrt{1-x}}+\frac{1}{1+\sqrt{1-x}}-1=x^2-2x+1\)

\(\Leftrightarrow\frac{x-1}{\left(1+\sqrt{1-x}\right)\left(\sqrt{x}+1\right)}+\frac{-\sqrt{1-x}}{1+\sqrt{1-x}}=\left(1-x\right)^2\)

\(\Leftrightarrow\sqrt{1-x}\left[\left(\sqrt{1-x}\right)^3+\frac{\sqrt{1-x}}{\left(1+\sqrt{1-x}\right)\left(\sqrt{x}+1\right)}+\frac{1}{1+\sqrt{1-x}}\right]=0\)

\(\Leftrightarrow\sqrt{1-x}=0\Leftrightarrow x=1.\)