K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2018

a) Điều kiện: x + 2 ≠ 0 và x – 2 ≠ 0 ⇔ x ≠ ± 2

(Khi đó: x2 – 4 = (x + 2)(x – 2) ≠ 0)

Vậy tập nghiệm của pt là: S = {-1; 1}

b) Điều kiện: 2x ≥ 0 ⇔ x ≥ 0

Khi đó: |x – 5| = 2x ⇔ x – 5 = 2x hoặc x – 5 = -2x

⇔ x = -5 hoặc x = 5/3

Vì x ≥ 0 nên ta lấy x = 5/3 . Tập nghiệm : S = {5/3}

c) x – 2)2 + 2(x – 1) ≤ x2 + 4

⇔ x2 – 4x + 4 + 2x – 2 ≤ x2 + 4

⇔ -2x ≤ 2

⇔ x ≥ -1

Tập nghiệm S = {x | x ≥ -1}

a, \(\frac{9}{x^2-4}=\frac{x-1}{x+2}+\frac{3}{x-2}\left(ĐKXĐ:x\ne\pm2\right)\)

\(\frac{9}{\left(x-2\right)\left(x+2\right)}=\frac{x-1}{x+2}+\frac{3}{x-2}\)

\(\frac{9}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

Khử mẫu : \(9=\left(x-1\right)\left(x-2\right)+3\left(x+2\right)\)

Đến đây nhường bn, rất dễ =))

b, \(\frac{1}{x-5}-\frac{3}{x^2-6x+5}=\frac{5}{x-1}\)

\(\frac{1}{x-5}-\frac{3}{\left(x-5\right)\left(x-1\right)}=\frac{5}{\left(x-1\right)}\)

\(\frac{\left(x-1\right)}{x-5}-\frac{3}{\left(x-5\right)\left(x-1\right)}=\frac{5\left(x-5\right)}{\left(x-1\right)\left(x-5\right)}\)

Khử mẫu \(x-1-3=5\left(x-5\right)\)

Tự lm nốt mà cho mk hỏi, đề bài có bpt mà bpt đâu 

6 tháng 7 2020

\(\frac{9}{x^2-4}=\frac{x-1}{x+2}+\frac{3}{x-2}\left(ĐKXĐ:x\ne2;-2\right)\)

\(< =>\frac{9}{x^2-2^2}=\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(< =>\frac{9}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{3x+6}{\left(x+2\right)\left(x-2\right)}\)

\(< =>9=x^2-2x-x+2+3x+6\)

\(< =>x^2-\left(2x+x-3x\right)+\left(2+6-9\right)=0\)

\(< =>x^2-2=0\)\(< =>x^2=2\)

\(< =>x=\pm\sqrt{2}\left(tmđk\right)\)

Vậy tập nghiệm của phương trình trên là \(\pm\sqrt{2}\)

18 tháng 9 2019

\(\frac{9}{x^2-4}=\frac{x-1}{x+2}+\frac{3}{x-2}\)

\(ĐKXĐ:x\ne\pm2\)

\(pt\Leftrightarrow\frac{9}{x^2-4}=\frac{x^2-3x+2}{x^2-4}+\frac{3x+6}{x^2-4}\)

\(\Leftrightarrow\frac{9}{x^2-4}=\frac{x^2+8}{x^2-4}\)

\(\Leftrightarrow x^2+8=9\Leftrightarrow x=\pm1\left(tm\right)\)

Vậy pt có 2 nghiệm là 1 và -1

18 tháng 9 2019

Điều kện :  \(x+2\ne0\) và \(x-2\ne0\Leftrightarrow x=\pm2\)

( Khi đó \(x^2-4=\left(x+2\right)\left(x-2\right)\ne0\) )

\(\frac{9}{x^2-4}=\frac{x-1}{x+2}+\frac{3}{x-2}\)

\(\Leftrightarrow\frac{9}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x-1\right)\left(x-2\right)+3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow x^2-3x+2+3x+6=9\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\)

Vậy tập nghiệm của PT là: \(S=\left\{-1;1\right\}\)

Chúc bạn học tốt !!!

11 tháng 5 2023

`|5x| = - 3x + 2`

Nếu `5x>=0<=> x>=0` thì phương trình trên trở thành :

`5x =-3x+2`

`<=> 5x +3x=2`

`<=> 8x=2`

`<=> x= 2/8=1/4` ( thỏa mãn )

Nếu `5x<0<=>x<0` thì phương trình trên trở thành :

`-5x = -3x+2`

`<=>-5x+3x=2`

`<=> 2x=2`

`<=>x=1` ( không thỏa mãn ) 

Vậy pt đã cho có nghiệm `x=1/4`

__

`6x-2<5x+3`

`<=> 6x-5x<3+2`

`<=>x<5`

Vậy bpt đã cho có tập nghiệm `x<5`

24 tháng 7 2021

\(\left|x-5\right|=2x\)ĐK : x>=0 

TH1 : x - 5 = 2x <=> x = -5 ( loại )

TH2 : x - 5 = -2x <=> 3x = 5 <=> x = 5/3 ( tm )

Vậy tập nghiệm pt là S = { 5/3 } 

\(\left(x-2\right)^2+2\left(x-1\right)\le x^2+4\)

\(\Leftrightarrow x^2-4x+4+2x-2-x^2-4\le0\)

\(\Leftrightarrow-2x-2\le0\Leftrightarrow x+1\ge0\Leftrightarrow x\ge-1\)

Vậy tập nghiệm bft là S = { x | x > = -1 } 

Ta có: \(\left|x-5\right|=2x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=2x\left(x\ge5\right)\\x-5=-2x\left(x< 5\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-2x=5\\x+2x=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-x=5\\3x=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\left(loại\right)\\x=\dfrac{5}{3}\left(nhận\right)\end{matrix}\right.\)

31 tháng 3 2022

bạn tải ảnh về r up lại đi bạn

31 tháng 3 2022

\(a,4\left(x-3\right)^2-\left(2x-1\right)^2\ge12\)

\(\Leftrightarrow4x^2-24x+36-4x^2-4x+1\ge12\)

\(\Leftrightarrow-28x+37\ge12\)

\(\Leftrightarrow-28x\ge12-37\)

\(\Leftrightarrow-28x\ge-25\)

\(\Leftrightarrow x\le\dfrac{25}{28}\)

Vậy \(S=\left\{x\left|x\le\dfrac{25}{28}\right|\right\}\)

b, \(\left(x-4\right)\left(x+4\right)\ge\left(x+3\right)^2+5\)

\(\Leftrightarrow x^2-16\ge x^2+6x+9+5\)

\(\Leftrightarrow x^2-x^2-6x\ge9+5+16\)

\(\Leftrightarrow-6x\ge30\)

\(\Leftrightarrow x\le-5\)

Vậy \(S=\left\{x\left|x\le-5\right|\right\}\)

\(c,\left(3x-1\right)^2-9\left(x+2\right)\left(x-2\right)< 5x\)

\(\Leftrightarrow9x^2-6x-1-9x^2+36< 5x\)

\(\Leftrightarrow9x^2-9x^2-6x-5x+36+1< 0\)

\(\Leftrightarrow-11x+37< 0\)

\(\Leftrightarrow-11x< -37\)

\(\Leftrightarrow x>\dfrac{37}{11}\)

vậy \(S=\left\{x\left|x>\dfrac{37}{11}\right|\right\}\)

Bàil: Giải phương trình sau a) 2x - 3 = 3 - x b) 7x - 4 = 3x + 12 c) 3x - 6 + x = 9 - x d) 10x - 12 - 3x = 6 + x Bài 2: Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số: a) 4x + 6 <= 2x - 2 b) 3x + 15 < 0 c) 3x - 3 > x + 5 d) x - 4 > - 2x + 5 Bài3: a) Một người đi xe máy từ 4 đến B với vận tốc 25km/h. Lúc về người đó đi với vận tốc 30km/h, nên thời gian về ít hơn thời gian đi là 20 phút. Tính AB ? b) Một người đi xe...
Đọc tiếp

Bàil: Giải phương trình sau a) 2x - 3 = 3 - x b) 7x - 4 = 3x + 12 c) 3x - 6 + x = 9 - x d) 10x - 12 - 3x = 6 + x Bài 2: Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số: a) 4x + 6 <= 2x - 2 b) 3x + 15 < 0 c) 3x - 3 > x + 5 d) x - 4 > - 2x + 5 Bài3: a) Một người đi xe máy từ 4 đến B với vận tốc 25km/h. Lúc về người đó đi với vận tốc 30km/h, nên thời gian về ít hơn thời gian đi là 20 phút. Tính AB ? b) Một người đi xe đạp từ A đến B với vận tốc 15 km/h. Sau đó quay về từ B về A với vận tốc 12 km/h. Cả đi lẫn về hết 4 giờ 30 phút. Tính quãng đường 4B Bài 4: Cho tam giác ABC vuông tại A với AB = 3cm AC= 4cm vẽ đường cao AE. a) Chứng minh rằng AABC đồng dạng với AEBA. b) Tia phân giác của góc ABC cắt AC tại F. Tính BF Bài 5: Cho tam giác ABC có AC = 8cm, AC = 16cm Gọi D và E là hai điểm lần lượt trên cạnh AB và AC sao cho BD = 2cm CE = 13cm Chứng minh rằng a. AAEB AADC b. AED= ABC, cho DE = 5cm Tính BC? C. AE AC AD AB

1

1:

a: =>3x=6

=>x=2

b: =>4x=16

=>x=4

c: =>4x-6=9-x

=>5x=15

=>x=3

d: =>7x-12=x+6

=>6x=18

=>x=3

2:

a: =>2x<=-8

=>x<=-4

b: =>x+5<0

=>x<-5

c: =>2x>8

=>x>4

a: =>x-2+2=x^2+2x

=>x^2+2x=x

=>x^2+x=0

=>x(x+1)=0

=>x=0(loại) hoặc x=-1(nhận)

b: =>-9(5x-8)+4(7x-12)=-6(x+18)

=>-45x+72+28x-48=-6x-108

=>-17x+24=-6x-108

=>-11x=-132

=>x=12