Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow-2\sqrt[3]{x}+5\sqrt{\sqrt{x}+1}-4=0\)
\(\Rightarrow x-2380\sqrt{37}-14477=0\)
\(\Rightarrow x+2380\sqrt{37}-14477=0\)
\(\Rightarrow x=2380\sqrt{37}+14477\)
thay 1 vào tử, thấy:
căn(5-x) = căn 4= 2;
căn bậc 3(x^2+7)=căn bậc 3 của 8=2
=> thêm bớt 2.
Bài làm:
lim {[căn(5-x)-2]-[căn bậc 3(x^2-7)-2]}/(x^2-1)
tương đương: lim [căn(5-x)-2]/(x^2-1) - lim [căn bậc 3(x^2-7)-2]/(x^2-1)
Tính lim từng số hạng như thường.
ĐKXĐ \(x+2\ne0\)và \(5-x\ne0\)
<=> \(x\ne-2\)và \(x\ne5\)
b)\(\sqrt{4x^2-16+16}=6\)<=> \(\sqrt{2^2\left(x^2-2\cdot x\cdot2+2^2\right)}=6\)<=> \(2\sqrt{\left(x-2\right)^2}=6\)<=> \(|x-2|=3\)
Với \(x-2>0\)<=> \(x>2\)
=> \(|x-2|=x-2\)
Phương trình trở thành \(x-2=3\)<=> \(x=5\)(thỏa)
Với \(x-2< 0\)<=> \(x< 2\)
=> \(|x-2|=-\left(x-2\right)=2-x\)
Phương trình trở thành \(2-x=3\)<=> \(-x=1\)<=> \(x=-1\)(thỏa)
Vậy nghiệm của phương trình là\(x=5\)và\(x=-1\)
Đặt \(\hept{\begin{cases}\sqrt[3]{x-16}=a\\\sqrt[3]{x+13}=b\end{cases}}\)
\(\Rightarrow b^3-a^3=29\)
Từ đó ta có hệ \(\hept{\begin{cases}1+a=b\\b^3-a^3=29\end{cases}}\)
Thế pt đầu vào pt sau ta được
\(a^3+3a^2+3a+1-a^3=29\)
\(\Leftrightarrow3a^2+3a-28=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=\frac{-3+\sqrt{345}}{6}\\a=\frac{-3-\sqrt{345}}{6}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}b=\frac{3+\sqrt{345}}{6}\\b=\frac{3-\sqrt{345}}{6}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{31\sqrt{345}+27}{18}\\x=\frac{-31\sqrt{345}+27}{18}\end{cases}}\)
\(\sqrt{x-5}=3\) ⇔ x - 5 = 9 ⇔ x = 4