Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn đưa quá nhiều bài 1 lúc nên người ta giải được cũng chẳng ai muốn giải đâu, vì nhìn vào đã thấy ngộp rồi. Kinh nghiệm là muốn được giải quyết nhanh thì chỉ đăng 2-3 bài 1 lúc thôi
Bài 1:
a/ \(11-\left(2x+3\right)=3\left(x-4\right)\)
\(\Leftrightarrow11-2x-3=3x-12\)
\(\Leftrightarrow5x=20\)
\(\Rightarrow x=4\)
b/ \(5\left(2x-3\right)-4\left(5x-7\right)=19-2x\)
\(\Leftrightarrow10x-15-20x+28=19-2x\)
\(\Leftrightarrow8x=-6\)
\(\Rightarrow x=-\frac{3}{4}\)
c/
\(\frac{x}{3}-\frac{2x+1}{2}=\frac{x}{6}-x\)
\(\Leftrightarrow2x-3\left(2x+1\right)=x-6x\)
\(\Leftrightarrow x=3\)
d/
\(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)
\(\Leftrightarrow5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-150\)
\(\Leftrightarrow79x=158\)
\(\Rightarrow x=2\)
e/
\(\frac{2-6x}{5}-\frac{2+3x}{10}=7-\frac{6x+3}{4}\)
\(\Leftrightarrow4\left(2-6x\right)-2\left(2+3x\right)=140-5\left(6x+3\right)\)
\(\Leftrightarrow0=-121\) (vô lý)
Vậy pt vô nghiệm
f/
\(\frac{3x+2}{2}-\frac{3x+1}{6}=2x+\frac{5}{3}\)
\(\Leftrightarrow3\left(3x+2\right)-\left(3x+1\right)=12x+10\)
\(\Leftrightarrow6x=-5\)
\(\Rightarrow x=-\frac{5}{6}\)

Câu 1: \(x^2+\frac{1}{x^2}-4x-\frac{4}{x}+6=0\)
\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)-4\left(x+\frac{1}{x}\right)+6=0\)
\(\text{Đặt a = }x+\frac{1}{x}\)
\(\Rightarrow a^2=\left(x+\frac{1}{x}\right)^2=x^2+2.x.\frac{1}{x}+\left(\frac{1}{x}\right)^2=x^2+2+\frac{1}{x^2}\)
\(\Rightarrow x^2+\frac{1}{x^2}=a^2-2\)
Thay vào phương trình ta có:
\(\left(a^2-2\right)-4a+6=0\)
\(\Leftrightarrow a^2-2-4a+4=0\)
\(\Leftrightarrow a^2-4a+4=0\)
\(\Leftrightarrow\left(a-2\right)^2=0\)
\(\Leftrightarrow a-2=0\)
\(\Rightarrow x+\frac{1}{x}-2=0\)\(ĐKXĐ:x\ne0\)
\(\Leftrightarrow\frac{x^2+1-2x}{x}=0\)
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy x=1

d, (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0
Đặt x2 + 4x + 8 = t ta được:
t2 + 3xt + 2x2 = 0
\(\Leftrightarrow\) t2 + xt + 2xt + 2x2 = 0
\(\Leftrightarrow\) t(t + x) + 2x(t + x) = 0
\(\Leftrightarrow\) (t + x)(t + 2x) = 0
Thay t = x2 + 4x + 8 ta được:
(x2 + 4x + 8 + x)(x2 + 4x + 8 + 2x) = 0
\(\Leftrightarrow\) (x2 + 5x + 8)[x(x + 4) + 2(x + 4)] = 0
\(\Leftrightarrow\) (x2 + 5x + \(\frac{25}{4}\) + \(\frac{7}{4}\))(x + 4)(x + 2) = 0
\(\Leftrightarrow\) [(x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\)](x + 4)(x + 2) = 0
Vì (x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\) > 0 với mọi x
\(\Rightarrow\left[{}\begin{matrix}x+4=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-2\end{matrix}\right.\)
Vậy S = {-4; -2}
Mình giúp bn phần khó thôi!
Chúc bn học tốt!!
c) \(\frac{1}{x-1}\)+\(\frac{2x^2-5}{x^3-1}\)=\(\frac{4}{x^2+x+1}\) (ĐKXĐ:x≠1)
⇔\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)+\(\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
⇒x2+x+1+2x2-5=4x-4
⇔3x2-3x=0
⇔3x(x-1)=0
⇔x=0 (TMĐK) hoặc x=1 (loại)
Vậy tập nghiệm của phương trình đã cho là:S={0}

1)
a)
\(2x+5=20+3x\\ \Leftrightarrow2x+5-20-3x=0\\ \Leftrightarrow-x-15=0\\ \Rightarrow x=-15\)
b)
\(2.5y+1.5=2.7y-1.5c\cdot2t-\frac{3}{5}=\frac{2}{3}-t\\ \Leftrightarrow2.5y+1.5-2.7y+3ct+\frac{3}{5}-\frac{2}{3}+t=0\\ \Leftrightarrow-0.2y+\frac{43}{30}+3ct+t=0\)
2)
a)
\(\frac{5x-4}{2}=\frac{16x+1}{7}\\ \Leftrightarrow\frac{35x-28}{14}-\frac{32x+2}{14}=0\\ \Leftrightarrow\frac{35x-28-32x-2}{14}=0\\ \Leftrightarrow\frac{3x-30}{14}=0\\ \Rightarrow3x-30=0\\ \Rightarrow x=10\)
b)
\(\frac{12x+5}{3}=\frac{2x-7}{4}\\ \Leftrightarrow\frac{48x+20}{12}-\frac{6x-21}{14}=0\\ \Leftrightarrow\frac{48x+20-6x+21}{12}=0\\ \Leftrightarrow\frac{42x+41}{12}=0\\ \Rightarrow42x+41=0\\ \Rightarrow x=-\frac{41}{42}\)
3)
a)
\(\left(x-1\right)^2-9=0\\ \Leftrightarrow\left(x-1-3\right)\cdot\left(x-1+3\right)=0\\ \Leftrightarrow\left(x-4\right)\cdot\left(x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-4=0\\x+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
\(a.\left(2x-6\right)\left(4x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-6=0\\4x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-\frac{1}{4}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{3;-\frac{1}{4}\right\}\)
\(b.\left(6-3x\right)\left(x^2-9\right)=0\\ \Leftrightarrow\left(6-3x\right)\left(x-3\right)\left(x+3\right)=0\\\Leftrightarrow \left[{}\begin{matrix}6-3x=0\\x-3=0\\x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=3\\x=-3\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{3;2;-3\right\}\)
\(c.\left(9x+3\right)\left(36x^2-1\right)\left(x-2\right)=0\\ \Leftrightarrow\left(9x+3\right)\left(6x-1\right)\left(6x+1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}9x+3=0\\6x-1=0\\6x+1=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\frac{1}{3}\\x=\frac{1}{6}\\x=-\frac{1}{6}\\x=2\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{-\frac{1}{3};\frac{1}{6};-\frac{1}{6};2\right\}\)
\(d.\left(x-5\right)\left(x^2+49\right)\left(\frac{2}{3}x+6\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-5=0\\\frac{2}{3}x+6=0\end{matrix}\right.\left(vix^{2\:}+49\ne0\forall x\right)\Rightarrow\left[{}\begin{matrix}x=5\\x=-9\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{5;-9\right\}\)
a,<=>2x-6=0 hoặc 4x+1=0
<=>x=3 hoặc x=-1/4
Vậy tập nghiệm của phương trình trên là S={3;-1/4}
b,<=>(6-3x)(x-3)(x+3)=0
<=>6-3x=0 hoặc x-3=0 hoặc x+3=0
<=>x=2 hoặc x=3 hoặc x=-3
tự kết luận.....