\(\tan^2x+\cot^2x=2\left(\cos^4x+\sin^4x\right)+\sin^22x\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 9 2020

ĐKXĐ: ...

\(\Leftrightarrow tan^2x+cot^2x=2\left(cos^4x+sin^4x+2sin^2x.cos^2x\right)\)

\(\Leftrightarrow tan^2x+cot^2x=2\left(sin^2x+cos^2x\right)^2\)

\(\Leftrightarrow tan^2x+cot^2x=2\)

\(\Leftrightarrow\left(tanx-cotx\right)^2=0\)

\(\Leftrightarrow tanx=cotx=tan\left(\frac{\pi}{2}-x\right)\)

\(\Leftrightarrow x=\frac{\pi}{2}-x+k\pi\)

\(\Leftrightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)

NV
5 tháng 9 2020

c/

\(\Leftrightarrow1-sin^22x+\sqrt{3}sin2x+sin2x=1+\sqrt{3}\)

\(\Leftrightarrow-sin^22x+\left(\sqrt{3}+1\right)sin2x-\sqrt{3}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=\sqrt{3}\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow2x=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\frac{\pi}{4}+k\pi\)

d/

\(\Leftrightarrow4\left(1-2sin^2x\right)+5sinx=4\left(3sinx-4sin^3x\right)+5\)

\(\Leftrightarrow16sin^3x-8sin^2x-7sinx-1=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(4sinx+1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=-\frac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=arcsin\left(-\frac{1}{4}\right)+k2\pi\\x=\pi-arcsin\left(-\frac{1}{4}\right)+k2\pi\end{matrix}\right.\)

NV
5 tháng 9 2020

b/

\(\Leftrightarrow3cos^2x+4sin\left(2\pi-\frac{\pi}{2}-x\right)+1=0\)

\(\Leftrightarrow3cos^2x-4sin\left(x+\frac{\pi}{2}\right)+1=0\)

\(\Leftrightarrow3cos^2x-4cosx+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=\frac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm arcos\left(\frac{1}{3}\right)+k2\pi\end{matrix}\right.\)

NV
8 tháng 9 2020

2.

\(\Leftrightarrow4cos^3x-3cosx-\left(1-2sin^2x\right)+9sinx-4=0\)

\(\Leftrightarrow cosx\left(4cos^2x-3\right)+2sin^2x+9sinx-5=0\)

\(\Leftrightarrow cosx\left(4\left(1-sin^2x\right)-3\right)+\left(2sinx-1\right)\left(sinx+5\right)=0\)

\(\Leftrightarrow cosx\left(1-4sin^2x\right)+\left(2sinx-1\right)\left(sinx+5\right)=0\)

\(\Leftrightarrow\left(cosx+2sinx.cosx\right)\left(1-2sinx\right)-\left(1-2sinx\right)\left(sinx+5\right)=0\)

\(\Leftrightarrow\left(1-2sinx\right)\left(cosx-sinx+2sinx.cosx-5\right)=0\)

\(\Leftrightarrow\left(1-2sinx\right)\left(\sqrt{2}cos\left(x+\frac{\pi}{4}\right)+sin2x-5\right)=0\)

\(\Leftrightarrow1-2sinx=0\) (do \(\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\le\sqrt{2};sin2x\le1\) nên ngoặc sau luôn âm)

\(\Leftrightarrow sinx=\frac{1}{2}\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

NV
8 tháng 9 2020

1.

Đặt \(\frac{x}{3}=t\) pt trở thành:

\(cos4t=sin^23t\Leftrightarrow2cos4t=1-cos6t\)

\(\Leftrightarrow cos6t+2cos4t-1=0\)

\(\Leftrightarrow4cos^32t-3cos2t+2\left(2cos^22t-1\right)-1=0\)

\(\Leftrightarrow4cos^32t+2cos^22t-3cos2t-3=0\)

\(\Leftrightarrow\left(cos2t-1\right)\left(4cos^22t+6cos2t+3\right)=0\)

\(\Leftrightarrow cos2t=1\Leftrightarrow cos\frac{2x}{3}=1\)

\(\Leftrightarrow\frac{2x}{3}=k2\pi\Leftrightarrow x=k3\pi\)

NV
5 tháng 9 2020

\(\Leftrightarrow2\left(sin^2x+cos^2x\right)-4sin^2x.cos^2x+\left(m+2\right)sin2x-2m-2=0\)

\(\Leftrightarrow-sin^22x+\left(m+2\right)sin2x-2m=0\)

\(\Leftrightarrow-sin^22x+2sin2x+m.sin2x-2m=0\)

\(\Leftrightarrow-sin2x\left(sin2x-2\right)+m\left(sin2x-2\right)=0\)

\(\Leftrightarrow\left(m-sin2x\right)\left(sin2x-2\right)=0\)

\(\Leftrightarrow sin2x=m\)

\(-1\le sin2x\le1\) \(\Rightarrow-1\le m\le1\)

NV
15 tháng 8 2020

a/

\(0\le sin^2x\le1\Rightarrow-2\le f\left(x\right)\le1\)

\(f\left(x\right)_{min}=-2\) khi \(sin^2x=1\)

\(f\left(x\right)_{max}=1\) khi \(sin^2x=1\)

b/

\(g\left(x\right)=1-cos^2x+3cosx-2=-cos^2x+3cosx-1\)

\(=-cos^2x+3cosx-2+1=\left(cosx-1\right)\left(2-cosx\right)+1\)

Do \(-1\le cosx\le1\Rightarrow\left\{{}\begin{matrix}cosx-1\le0\\2-cosx>0\end{matrix}\right.\)

\(\Rightarrow\left(cosx-1\right)\left(2-cosx\right)\le0\Rightarrow g\left(x\right)\le1\)

\(g\left(x\right)_{max}=1\) khi \(cosx=1\)

\(g\left(x\right)=-cos^2x+3cosx+4-5=\left(cosx+1\right)\left(4-cosx\right)-5\)

\(\left(cosx+1\right)\left(4-cosx\right)\ge0\Rightarrow g\left(x\right)\ge-5\)

\(g\left(x\right)_{min}=-5\) khi \(cosx=-1\)

NV
6 tháng 7 2020

\(sin3x=-\frac{\sqrt{3}}{2}=sin\left(-\frac{\pi}{3}\right)\)

\(\Rightarrow\left[{}\begin{matrix}3x=-\frac{\pi}{3}+k2\pi\\3x=\frac{4\pi}{3}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{9}+\frac{k2\pi}{3}\\x=\frac{4\pi}{9}+\frac{k2\pi}{3}\end{matrix}\right.\)

\(sin\left(2x-\frac{\pi}{7}\right)=\frac{\sqrt{2}}{2}=sin\left(\frac{\pi}{4}\right)\)

\(\Rightarrow\left[{}\begin{matrix}2x-\frac{\pi}{7}=\frac{\pi}{4}+k2\pi\\2x-\frac{\pi}{7}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{11\pi}{56}+k\pi\\x=\frac{25\pi}{56}+k\pi\end{matrix}\right.\)

\(sin\left(4x+1\right)=\frac{3}{5}=sina\) (với góc a sao cho \(sina=\frac{3}{5}\))

\(\Rightarrow\left[{}\begin{matrix}4x+1=a+k2\pi\\4x+1=\pi-a+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{a}{4}-\frac{1}{4}+\frac{k\pi}{2}\\x=\frac{\pi}{4}-\frac{a}{4}-\frac{1}{4}+\frac{k\pi}{2}\end{matrix}\right.\)

\(sin\left(2x+\frac{\pi}{7}\right)=sin\left(x-\frac{3\pi}{7}\right)\)

\(\Rightarrow\left[{}\begin{matrix}2x+\frac{\pi}{7}=x-\frac{3\pi}{7}+k2\pi\\2x+\frac{\pi}{7}=\pi-x+\frac{3\pi}{7}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{4\pi}{7}+k2\pi\\x=\frac{3\pi}{7}+\frac{k2\pi}{3}\end{matrix}\right.\)

\(sin\left(4x+\frac{\pi}{7}\right)=\frac{1}{4}\)

Đặt \(\frac{1}{4}=sina\Rightarrow sin\left(4x+\frac{\pi}{7}\right)=sina\)

\(\Rightarrow\left[{}\begin{matrix}4x+\frac{\pi}{7}=a+k2\pi\\4x+\frac{\pi}{7}=\pi-a+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{28}+\frac{a}{4}+\frac{k\pi}{2}\\x=\frac{3\pi}{14}-\frac{a}{4}+\frac{k\pi}{2}\end{matrix}\right.\)

NV
10 tháng 9 2020

c/

\(\Leftrightarrow sin3x-\sqrt{3}cos3x=sinx+\sqrt{3}cosx\)

\(\Leftrightarrow\frac{1}{2}sin3x-\frac{\sqrt{3}}{2}cos3x=\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\)

\(\Leftrightarrow sin\left(3x-\frac{\pi}{3}\right)=sin\left(x+\frac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-\frac{\pi}{3}=x+\frac{\pi}{3}+k2\pi\\3x-\frac{\pi}{3}=\frac{2\pi}{3}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=\frac{\pi}{4}+\frac{k\pi}{2}\end{matrix}\right.\)

NV
10 tháng 9 2020

a/

\(\Leftrightarrow\sqrt{3}cos2x-\left(sin^2x+cos^2x-2sinx.cosx\right)=2\)

\(\Leftrightarrow\sqrt{3}cos2x-1+sin2x=2\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}cos2x+\frac{1}{2}sin2x=\frac{3}{2}\)

\(\Leftrightarrow sin\left(2x+\frac{\pi}{3}\right)=\frac{3}{2}\)

Vế phải lớn hơn 1 nên pt vô nghiệm

b/

\(\Leftrightarrow\frac{5}{2}\left(1+cos2x\right)+2sin2x=4\)

\(\Leftrightarrow4sin2x+5cos2x=3\)

\(\Leftrightarrow\frac{4}{\sqrt{41}}sin2x+\frac{5}{\sqrt{41}}cos2x=\frac{3}{\sqrt{41}}\)

Đặt \(\frac{4}{\sqrt{41}}=cosa\) với \(a\in\left(0;\pi\right)\)

\(\Rightarrow sin2x.cosa+cos2x.sina=\frac{3}{\sqrt{41}}\)

\(\Leftrightarrow sin\left(2x+a\right)=\frac{3}{\sqrt{41}}=sinb\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+a=b+k2\pi\\2x+a=\pi-b+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{b}{2}-\frac{a}{2}+k\pi\\x=\frac{\pi}{2}-\frac{a}{2}-\frac{b}{2}+k\pi\end{matrix}\right.\)