K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 9 2020

ĐKXĐ: ...

\(\Leftrightarrow tan^2x+cot^2x=2\left(cos^4x+sin^4x+2sin^2x.cos^2x\right)\)

\(\Leftrightarrow tan^2x+cot^2x=2\left(sin^2x+cos^2x\right)^2\)

\(\Leftrightarrow tan^2x+cot^2x=2\)

\(\Leftrightarrow\left(tanx-cotx\right)^2=0\)

\(\Leftrightarrow tanx=cotx=tan\left(\frac{\pi}{2}-x\right)\)

\(\Leftrightarrow x=\frac{\pi}{2}-x+k\pi\)

\(\Leftrightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)

NV
5 tháng 9 2020

c/

\(\Leftrightarrow1-sin^22x+\sqrt{3}sin2x+sin2x=1+\sqrt{3}\)

\(\Leftrightarrow-sin^22x+\left(\sqrt{3}+1\right)sin2x-\sqrt{3}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=\sqrt{3}\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow2x=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\frac{\pi}{4}+k\pi\)

d/

\(\Leftrightarrow4\left(1-2sin^2x\right)+5sinx=4\left(3sinx-4sin^3x\right)+5\)

\(\Leftrightarrow16sin^3x-8sin^2x-7sinx-1=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(4sinx+1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=-\frac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=arcsin\left(-\frac{1}{4}\right)+k2\pi\\x=\pi-arcsin\left(-\frac{1}{4}\right)+k2\pi\end{matrix}\right.\)

NV
5 tháng 9 2020

b/

\(\Leftrightarrow3cos^2x+4sin\left(2\pi-\frac{\pi}{2}-x\right)+1=0\)

\(\Leftrightarrow3cos^2x-4sin\left(x+\frac{\pi}{2}\right)+1=0\)

\(\Leftrightarrow3cos^2x-4cosx+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=\frac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm arcos\left(\frac{1}{3}\right)+k2\pi\end{matrix}\right.\)

17 tháng 8 2021

ĐK: \(x\ne k\pi\)

\(\dfrac{1+sin2x+cos2x}{1+cot^2x}=sinx.\left(sin2x+2sin^2x\right)\)

\(\Leftrightarrow\dfrac{1+sin2x+cos2x}{\dfrac{cos^2x+sin^2x}{sin^2x}}=sinx.\left(2sinx.cosx+2sin^2x\right)\)

\(\Leftrightarrow\dfrac{1+sin2x+cos2x}{\dfrac{1}{sin^2x}}=2sin^2x.\left(cosx+sinx\right)\)

\(\Leftrightarrow1+sin2x+cos2x=2cosx+2sinx\)

\(\Leftrightarrow1+2sinx.cosx+2cos^2x-1=2cosx+2sinx\)

\(\Leftrightarrow\left(cosx-1\right).\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left(cosx-1\right).sin\left(x+\dfrac{\pi}{4}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\sin\left(x+\dfrac{\pi}{4}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x+\dfrac{\pi}{4}=k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=-\dfrac{\pi}{4}+k\pi\end{matrix}\right.\)

25 tháng 8 2021

Cảm ơn bạn nhé

NV
5 tháng 9 2020

\(\Leftrightarrow2\left(sin^2x+cos^2x\right)-4sin^2x.cos^2x+\left(m+2\right)sin2x-2m-2=0\)

\(\Leftrightarrow-sin^22x+\left(m+2\right)sin2x-2m=0\)

\(\Leftrightarrow-sin^22x+2sin2x+m.sin2x-2m=0\)

\(\Leftrightarrow-sin2x\left(sin2x-2\right)+m\left(sin2x-2\right)=0\)

\(\Leftrightarrow\left(m-sin2x\right)\left(sin2x-2\right)=0\)

\(\Leftrightarrow sin2x=m\)

\(-1\le sin2x\le1\) \(\Rightarrow-1\le m\le1\)

11 tháng 7 2021

a) \(\left|sinx-cosx\right|+\left|sinx+cosx\right|=2\)

\(\Leftrightarrow\left(sinx-cosx\right)^2+2\left|sinx-cosx\right|\left|sinx+cosx\right|+\left(cosx+sinx\right)^2=4\)

\(\Leftrightarrow2\left(sin^2x+cos^2x\right)+2\left|\left(sinx-cosx\right)\left(sinx+cosx\right)\right|=4\)

\(\Leftrightarrow\left|sin^2x-cos^2x\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}sin^2x-cos^2x=1\\sin^2x-cos^2x=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}sin^2x-cos^2x=sin^2x+cos^2x\\sin^2x-cos^2x=-\left(sin^2x+cos^2x\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}cos^2x=0\\sin^2x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sinx=0\end{matrix}\right.\)\(\Rightarrow cosx.sinx=0\Rightarrow sin2x=0\)

\(\Rightarrow x=\dfrac{k\pi}{2},k\in Z\)

Vậy...

b) ĐK:\(x\ne\dfrac{k\pi}{2};k\in Z\)

Pt \(\Leftrightarrow\dfrac{sinx}{cosx}-\dfrac{3cosx}{sinx}=4\left(sinx+\sqrt{3}cosx\right)\)

\(\Leftrightarrow\dfrac{sin^2x-3cos^2x}{cosx.sinx}=4\left(sinx+\sqrt{3}cosx\right)\)

\(\Leftrightarrow\dfrac{\left(sinx-\sqrt{3}cosx\right)\left(sinx+\sqrt{3}cosx\right)}{sinx.cosx}=4\left(sinx+\sqrt{3}cosx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+\sqrt{3}cosx=0\left(1\right)\\\dfrac{sinx-\sqrt{3}cosx}{sinx.cosx}=4\left(2\right)\end{matrix}\right.\)

Từ \(\left(1\right)\Leftrightarrow tanx=-\sqrt{3}\Leftrightarrow x=-\dfrac{\pi}{3}+k\pi,k\in Z\)

Từ (2)\(\Leftrightarrow sinx-\sqrt{3}cosx=4sinx.cosx\)

\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=2sinx.cosx\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=sin2x\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{3}+k2\pi\\x=\dfrac{4\pi}{9}+\dfrac{k2\pi}{3}\end{matrix}\right.\)\(\left(k\in Z\right)\)

Vậy \(\left[{}\begin{matrix}x=-\dfrac{\pi}{3}+k\pi\\x=\dfrac{4\pi}{9}+\dfrac{k2\pi}{3}\end{matrix}\right.\)\(\left(k\in Z\right)\)

c) ĐK: \(x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\left(k\in Z\right)\)

Pt \(\Leftrightarrow\left(\sqrt{2}sinx-1\right)^2+\left(\sqrt{3}tan2x-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2}sinx-1=0\\\sqrt{3}tan2x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}sinx=\dfrac{1}{\sqrt{2}}\\tan2x=\dfrac{1}{\sqrt{3}}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k2\pi\\x=\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\\x=\dfrac{\pi}{12}+k\pi\end{matrix}\right.\)\(\Rightarrow x\in\varnothing\)

Vậy pt vô nghiệm

NV
28 tháng 7 2021

1a.

Đặt \(5x+6=u\)

\(cos2u+4\sqrt{2}sinu-4=0\)

\(\Leftrightarrow1-2sin^2u+4\sqrt{2}sinu-4=0\)

\(\Leftrightarrow2sin^2u-4\sqrt{2}sinu+3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinu=\dfrac{3\sqrt{2}}{2}>1\left(loại\right)\\sinu=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Rightarrow sin\left(5x+6\right)=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}5x+6=\dfrac{\pi}{4}+k2\pi\\5x+6=\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{6}{5}+\dfrac{\pi}{20}+\dfrac{k2\pi}{5}\\x=-\dfrac{6}{5}+\dfrac{3\pi}{20}+\dfrac{k2\pi}{5}\end{matrix}\right.\)

NV
28 tháng 7 2021

1b.

Đặt \(2x+1=u\)

\(cos2u+3sinu=2\)

\(\Leftrightarrow1-2sin^2u+3sinu=2\)

\(\Leftrightarrow2sin^2u-3sinu+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinu=1\\sinu=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(2x+1\right)=1\\sin\left(2x+1\right)=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=\dfrac{\pi}{2}+k2\pi\\2x+1=\dfrac{\pi}{6}+k2\pi\\2x+1=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}+\dfrac{\pi}{4}+k\pi\\x=-\dfrac{1}{2}+\dfrac{\pi}{12}+k\pi\\x=-\dfrac{1}{2}+\dfrac{5\pi}{12}+k\pi\end{matrix}\right.\)

NV
8 tháng 9 2020

2.

\(\Leftrightarrow4cos^3x-3cosx-\left(1-2sin^2x\right)+9sinx-4=0\)

\(\Leftrightarrow cosx\left(4cos^2x-3\right)+2sin^2x+9sinx-5=0\)

\(\Leftrightarrow cosx\left(4\left(1-sin^2x\right)-3\right)+\left(2sinx-1\right)\left(sinx+5\right)=0\)

\(\Leftrightarrow cosx\left(1-4sin^2x\right)+\left(2sinx-1\right)\left(sinx+5\right)=0\)

\(\Leftrightarrow\left(cosx+2sinx.cosx\right)\left(1-2sinx\right)-\left(1-2sinx\right)\left(sinx+5\right)=0\)

\(\Leftrightarrow\left(1-2sinx\right)\left(cosx-sinx+2sinx.cosx-5\right)=0\)

\(\Leftrightarrow\left(1-2sinx\right)\left(\sqrt{2}cos\left(x+\frac{\pi}{4}\right)+sin2x-5\right)=0\)

\(\Leftrightarrow1-2sinx=0\) (do \(\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\le\sqrt{2};sin2x\le1\) nên ngoặc sau luôn âm)

\(\Leftrightarrow sinx=\frac{1}{2}\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

NV
8 tháng 9 2020

1.

Đặt \(\frac{x}{3}=t\) pt trở thành:

\(cos4t=sin^23t\Leftrightarrow2cos4t=1-cos6t\)

\(\Leftrightarrow cos6t+2cos4t-1=0\)

\(\Leftrightarrow4cos^32t-3cos2t+2\left(2cos^22t-1\right)-1=0\)

\(\Leftrightarrow4cos^32t+2cos^22t-3cos2t-3=0\)

\(\Leftrightarrow\left(cos2t-1\right)\left(4cos^22t+6cos2t+3\right)=0\)

\(\Leftrightarrow cos2t=1\Leftrightarrow cos\frac{2x}{3}=1\)

\(\Leftrightarrow\frac{2x}{3}=k2\pi\Leftrightarrow x=k3\pi\)