Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu a thì mình chịu rồi @@ sorry nha
Còn câu b, bạn thấy rằng x2-3x+2-x2+x+1+2x-3=0 đúng không nào?
Nếu như bạn còn nhớ công thức a+b+c=0 <=> a3+b3+c3=3abc
Thì chắc chắn là bạn sẽ giải ra được bài này thôi. Đáp số là x=1 hoặc x=2 hoặc x=3/2 bạn nhé.
Chúc bạn giải được câu b này. Nếu như vẫn còn thắc mắc thì trả lời lại cho mình để mình gừi bài giải chi tiết nhé, do giờ mình đang bận @@
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ : \(x\ge1\)
PT đã cho tương đương với :
\(\sqrt{3x-2}+\sqrt{x-1}=\left[3x-2+2\sqrt{3x^2-5x+2}+x-1\right]-6\)
\(\Leftrightarrow\sqrt{3x-2}+\sqrt{x-1}=\left(\sqrt{3x-2}+\sqrt{x-1}\right)^2-6\)
Đặt \(\sqrt{3x-2}+\sqrt{x-1}=t\left(t\ge1\right)\)
Khi đó : \(t^2-t-6=0\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\left(loai\right)\end{cases}}\)
\(\Rightarrow\sqrt{3x-2}+\sqrt{x-1}=3\)
từ đó dễ dàng tìm được x
Làm tiếp bài của @Thanh Tùng DZ
Thay t=3 vào cách đặt ta được \(\sqrt{3x-2}+\sqrt{x-1}=3\left(3a\right)\)
Ta có \(\left(3a\right)\Leftrightarrow4x-3+2\sqrt{3x^2-5x+2}=9\)
\(\Leftrightarrow\sqrt{3x^2-5x+2}=6-2x\)
\(\Leftrightarrow\hept{\begin{cases}6-2x\ge0\\3x^2-5x+2=36-24x+4x^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le3\\x=2;x=17\end{cases}\Leftrightarrow x=2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(x^4+16x^2+32=0\Leftrightarrow\left(x^2-8\right)^2-32=0\left(1\right)\)
Với \(x=\sqrt{6-3\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}\)\(\Leftrightarrow x=\sqrt{3}\sqrt{2-\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}\)
\(\Rightarrow x^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{3}\sqrt{2-\sqrt{3}}\)
Thay x vào vế phải của (1) ta được:
\(\left(x^2-8\right)^2-32=\left(8-2\sqrt{2+\sqrt{3}}-2\sqrt{3}\sqrt{2-\sqrt{3}}-8\right)^2-32\)
\(=4\left(2+\sqrt{3}\right)+4\sqrt{3}+12\left(2-\sqrt{3}\right)-32\)
\(=8+4\sqrt{3}+8\sqrt{3}+24-12\sqrt{3}-32=0\)= vế phải
Vậy \(x-\sqrt{6-3\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}\)là 1 nghiệm của phương trình đã cho(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(t=\sqrt{x^2+4\sqrt{5}}\to t>0.\) Phương trình trở thành \(\frac{\left(2t^2-7\right)^2-161}{4}=\left(34-3t^2\right)t\Leftrightarrow\left(2t^2-7\right)^2-161=4t\left(34-3t^2\right)\)
\(\Leftrightarrow\left(t^2-2t-4\right)\left(t^2+5t+7\right)=0\Leftrightarrow t^2-2t=4\Leftrightarrow t=1+\sqrt{5}.\) (Vì t>0)
Vậy ta được \(x^2+4\sqrt{5}=\left(1+\sqrt{5}\right)^2\Leftrightarrow x^2=\left(\sqrt{5}-1\right)^2\Leftrightarrow x=\pm\left(\sqrt{5}-1\right).\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) ĐK: \(x>2009;y>2010;z>2011\)
\(\Leftrightarrow\frac{\sqrt{x-2009}-1}{x-2009}-\frac{1}{4}+\frac{\sqrt{y-2010}-1}{y-2010}-\frac{1}{4}+\frac{\sqrt{z-2011}-1}{z-2011}-\frac{1}{4}=0\)
\(\Leftrightarrow\frac{-\left(\sqrt{x-2009}-2\right)^2}{4\left(x-2009\right)}+\frac{-\left(\sqrt{y-2010}-2\right)^2}{4\left(y-2010\right)}+\frac{-\left(\sqrt{z-2011}-2\right)^2}{4\left(z-2011\right)}=0\left(1\right)\)
Dễ thấy với đkxđ thì \(VT\left(1\right)\le0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{x-2009}=2\\\sqrt{y-2010}=2\\\sqrt{z-2011}=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=2013\\y=2014\\z=2015\end{cases}\left(tm\right)}}\)
\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)(*)
\(ĐK:\orbr{\begin{cases}x\ge3\\x\le-3\end{cases}}\)
(*)\(\Leftrightarrow\sqrt{\left(x+3\right)\left(x-3\right)}+\sqrt{\left(x-3\right)^2}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\left(tm\right)\\\sqrt{x+3}+\sqrt{x-3}=0\end{cases}}\)
Xét phương trình\(\sqrt{x+3}+\sqrt{x-3}=0\)(**) có \(\sqrt{x+3}\ge0;\sqrt{x-3}\ge0\)nên (**) xảy ra khi \(\hept{\begin{cases}\sqrt{x+3}=0\\\sqrt{x-3}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\x=3\end{cases}}\left(L\right)\)
Vậy phương trình có một nghiệm duy nhất là 3
\(\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}\)
\(\Leftrightarrow\sqrt{x^2+12}-\sqrt{x^2+5}=3x-5\)
bình phương 2 vế ta được :
\(x^2+12-2\sqrt{x^2+12}\sqrt{x^2+5}+x^2+5=9x^2-30x+25\)
\(\Leftrightarrow2\sqrt{\left(x^2+12\right)\left(x^2+5\right)}=-7x^2+30x-8\)
\(\Leftrightarrow-45x^4-944x^2+176+420x^3+480x=0\)
\(\Leftrightarrow\left(x-2\right)\left(-45x^3+330x^2-284x-88\ne0\right)=0\)
Vậy \(x=2\)
:V bạn bình phương tới bến luôn à?