\(\sqrt{x+1}\)+\(\sqrt{x-2}\)) (2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2017

Nhìn không đủ chán rồi không dám động vào

17 tháng 1 2017

Viết đề kiểu gì v @@

18 tháng 2 2017

mấy câu đầu + giữa = bình phương+ liên hợp

câu cuối cùng pt cho thành mũ 2

10 tháng 8 2020

cần gấp thì mình làm cho 

\(\sqrt{x^2+2x+1}=\sqrt{x+1}\left(đk:x\ge1\right)\)

\(< =>\sqrt{\left(x+1\right)^2}=\sqrt{x+1}\)

\(< =>x+1=\sqrt{x+1}\)

\(< =>\frac{x+1}{\sqrt{x+1}}=1\)

\(< =>\sqrt{x+1}=1< =>x=0\left(ktm\right)\)

10 tháng 8 2020

ĐKXĐ : \(x\ge-1\)

Bình phương 2 vế , ta có :

\(x^2+2x+1=x+1\)

\(\Leftrightarrow x^2+2x+1-x-1=0\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(TM\right)}\)\

Vậy ...............................

13 tháng 11 2016

6/ Đặt \(\hept{\begin{cases}\sqrt[4]{x}=a\\\sqrt[4]{2-x}=b\end{cases}}\)

\(\Rightarrow b^4+a^4=2\)

Từ đó ta có: a + b = 2

Ta có: \(a^4+b^2\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(a+b\right)^4}{8}=\frac{16}{8}=2\)

Dấu = xảy ra khi a = b = 1

=> x = 1

13 tháng 8 2017

1 câu hỏi post 2 câu thôi là chán rồi ==" bạn gắng post lại từng câu 1 mình làm cho nhé :v

30 tháng 3 2020

\(\sqrt{\sqrt{2}-1-x}+\sqrt[4]{x}=\frac{1}{\sqrt[4]{2}}\)

ĐKXĐ: Tự tìm nhé.

\(\left(\sqrt{\sqrt{2}-1-x};\sqrt[4]{x}\right)\rightarrow\left(b;a\right)\)

Phương trình <=>  \(\hept{\begin{cases}a+b=\frac{1}{\sqrt[4]{2}}\\a^4+b^2=\sqrt{2}-1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}b=\frac{1}{\sqrt[4]{2}}-a\\a^4+b^2=\sqrt{2}-1\left(2\right)\end{cases}}\)

(2) <=> \(a^4+a^2-\frac{2}{\sqrt[4]{2}}a+\frac{1}{\sqrt{2}}-\sqrt{2}+1=0\)

\(\Leftrightarrow\sqrt{2}a^4+\sqrt{2}a^2-2\sqrt[4]{2}a+\sqrt{2}-1=0\)

\(\Leftrightarrow\left(a^2-a+\frac{\sqrt{2}-\sqrt[4]{2}}{\sqrt{2}}\right)\left(\sqrt{2}a^2+\sqrt{2}a+2\sqrt{2}+\sqrt[4]{2}-\sqrt{2}\right)=0\)

\(\Leftrightarrow a^2-a+\frac{\sqrt{2}-\sqrt[4]{2}}{\sqrt{2}}=0\)( vì \(\Leftrightarrow\sqrt{2}a^2+\sqrt{2}a+2\sqrt{2}+\sqrt[4]{2}-\sqrt{2}>0\))

Tự làm tiếp nhé

30 tháng 3 2020

ĐK: \(x\ge\frac{1}{2}\)

\(\sqrt{\frac{x+7}{x+1}}+8=2x^2+\sqrt{2x-1}\)

\(\Leftrightarrow\left(\sqrt{\frac{x+7}{x+1}}-\sqrt{3}\right)+2\left(2-x\right)\left(2+x\right)=\left(\sqrt{2x-1}-\sqrt{3}\right)\)

\(\Leftrightarrow\frac{2\left(2-x\right)}{\sqrt{\left(x+7\right)\left(x+1\right)}+\sqrt{3}\left(x+1\right)}+2\left(2-x\right)\left(2+x\right)=\frac{2\left(x-2\right)}{\sqrt{2x-1}+\sqrt{3}}\)

\(\Leftrightarrow\frac{2\left(2-x\right)}{\sqrt{\left(x+7\right)\left(x+1\right)}+\sqrt{3}\left(x+1\right)}+2\left(2-x\right)\left(2+x\right)+\frac{2\left(2-x\right)}{\sqrt{2x-1}+\sqrt{3}}=0\)

\(\Leftrightarrow\left(2-x\right)\left[\frac{2}{\sqrt{\left(x+7\right)\left(x+1\right)}+\sqrt{3}\left(x+1\right)}+2\sqrt{2+x}+\frac{2}{\sqrt{2x-1}+\sqrt{3}}\right]=0\)

\(\Leftrightarrow x=2\)\(\frac{2}{\sqrt{\left(x+7\right)\left(x+1\right)}+\sqrt{3}\left(x+1\right)}+2\left(2+x\right)+\frac{2}{\sqrt{2x-1}+\sqrt{3}}>0\))

KL:...