Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Pt\(\Leftrightarrow\left\{{}\begin{matrix}3x-4=\left(x-3\right)^2\\x-3\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x-4=x^2-6x+9\\x\ge3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-9x+13=0\\x\ge3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x_1=\dfrac{9+\sqrt{29}}{2}\\x_2=\dfrac{9-\sqrt{29}}{2}\end{matrix}\right.\\x\ge3\end{matrix}\right.\)\(\Leftrightarrow x=\dfrac{9+\sqrt{29}}{2}\)
Vậy \(x=\dfrac{9+\sqrt{29}}{2}\) là nghiệm của phương trình.
b) Pt \(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x+3=\left(2x-1\right)^2\\2x-1\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x^2-2x-2=0\\x\ge\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x_1=\dfrac{1+\sqrt{7}}{3}\\x_2=\dfrac{1-\sqrt{7}}{3}\end{matrix}\right.\\x\ge\dfrac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow x=\dfrac{1+\sqrt{7}}{3}\)
Vậy phương trình có duy nhất nghiệm là: \(x=\dfrac{1+\sqrt{7}}{3}\)
đk: \(\hept{\begin{cases}x^2-2x+5\ge0\\4x+5\ge0\end{cases}}\Leftrightarrow x\ge\frac{-5}{4}\)
Ta có: \(x^3-2x^2-\sqrt{x^2-2x+5}=2\sqrt{4x+5}-5x-4\)
\(\Leftrightarrow3x^3-6x^2+15x+12-3\sqrt{x^2-2x+5}-6\sqrt{4x+5}=0\)
\(\Leftrightarrow3\left(x+1-\sqrt{x^2-2x+5}\right)+2\sqrt{4x+5}\left(\sqrt{4x+5}-3\right)+3x^3-6x^2+4x-1=0\)
\(\Leftrightarrow\frac{12\left(x-1\right)}{x+1+\sqrt{x^2-2x+5}}+\frac{8\left(x-1\right)\sqrt{4x+5}}{\sqrt{4x+5}+3}+\left(x-1\right)\left(3x^2-3x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{12}{x+1+\sqrt{x^2-2x+5}}+\frac{8\sqrt{4x+5}}{\sqrt{4x+5}+3}+3x^2-3x+1\right)=0\Leftrightarrow x=1\)
1/ \(3x^2+4x-3=4x\sqrt{4x-3}\)
\(\Leftrightarrow\left(4x^2-4x\sqrt{4x-3}+4x-3\right)-x^2=0\)
\(\Leftrightarrow\left(2x-\sqrt{4x-3}\right)^2-x^2=0\)
\(\Leftrightarrow\left(3x-\sqrt{4x-3}\right)\left(x-\sqrt{4x-3}\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}3x=\sqrt{4x-3}\\x=\sqrt{4x-3}\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}9x^2-4x+3=0\\x^2-4x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}x=1\\x=3\end{matrix}\right.\)
3.\(pt\Leftrightarrow\sqrt{3x+8}-\sqrt{3x+5}=\sqrt{5x-4}-\sqrt{5x-7}\)
\(\Leftrightarrow\frac{3x+8-5x+4}{\sqrt{3x+8}+\sqrt{5x+4}}-\frac{3x+5-5x+7}{\sqrt{3x+5}+\sqrt{5x+7}}=0\)
\(\Leftrightarrow\left(12-2x\right)\left(\frac{1}{\sqrt{3x+8}+\sqrt{5x+4}}+\frac{1}{\sqrt{3x+5}+\sqrt{5x+7}}\right)=0\)
\(\Rightarrow x=6\)
*Với x\(\ge\)2 PT trở thành: x.(x-2)+(2x+5)=8
<=>x2-2x+2x+5=8
<=>x2=3
<=>\(x=\sqrt{3}\left(loại\right)\text{ hoặc }x=-\sqrt{3}\left(loại\right)\)
*Với \(-\frac{5}{2}\le x<2\) PT trở thành: x.(2-x)+(2x+5)=8
<=>2x-x2+2x+5=8
<=>-x2+4x-3=0
<=>-x2+3x+x-3=0
<=>-x.(x-3)+(x-3)=0
<=>(x-3)(1-x)=0
<=>x=3 (loại) hoặc x=1
*Với x<-5/2 PT trở thành: x.(2-x)-(2x+5)=8
<=>2x-x2-2x-5=8
<=>x2=-13 (vô lí)
Vậy S={1}
\(\sqrt{x+1}=5-\sqrt{2x+3}\)
ĐK: x\(\ge\)1
\(\sqrt{x+1}=5-\sqrt{2x+3}\Leftrightarrow\sqrt{2x+3}=5-\sqrt{x+1}\)
\(\Leftrightarrow2x+3=25-2\sqrt{x+1}+x+1\Leftrightarrow x-23=-2\sqrt{x+1}\)
\(\Leftrightarrow x^2-46x+529=4x+4\Leftrightarrow x^2-50+525\)
\(\Delta=400\Rightarrow\sqrt{\Delta}=20\)
\(\Delta>0,PT\text{ có 2 nghiệm pb: }x_1=35;x_2=15\)
Vậy S={15;35}
1/ ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-2.3\sqrt{x-1}+9}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\)
\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|=1\)
Mà \(\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}-2+3-\sqrt{x-1}\right|=1\)
Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}\sqrt{x-1}\ge2\\\sqrt{x-1}\le3\end{matrix}\right.\) \(\Rightarrow5\le x\le10\)
Vậy phương trình nghiệm đúng với mọi \(x\in\left[5;10\right]\)
2/ ĐKXĐ: \(x\ge\dfrac{5}{2}\)
Nhân 2 vế với \(\sqrt{2}\) ta được:
\(\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)
\(\Leftrightarrow\sqrt{2x-5+2.3\sqrt{2x-5}+9}+\sqrt{2x-5-2\sqrt{2x-5}+1}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)
\(\Leftrightarrow\sqrt{2x-5}+3+\left|\sqrt{2x-5}-1\right|=4\)
\(\Leftrightarrow\sqrt{2x-5}+\left|\sqrt{2x-5}-1\right|=1\)
TH1: \(\sqrt{2x-5}\ge1\Rightarrow\sqrt{2x-5}+\sqrt{2x-5}-1=1\)
\(\Leftrightarrow\sqrt{2x-5}=1\Rightarrow2x=6\Rightarrow x=3\)
TH2: \(\sqrt{2x-5}< 1\Rightarrow\sqrt{2x-5}+1-\sqrt{2x-5}=1\Leftrightarrow1=1\) (đúng với mọi \(\dfrac{5}{2}\le x< 3\))
Vậy nghiệm của phương trình là \(\dfrac{5}{2}\le x\le3\)
ĐKXĐ: x – 6 ≥ 0 ⇔ x > 6. Bình phương hai vế thì được 5x + 6 = (x – 6)2 ⇔ x2 = 2 (loại), x2 = 15 (nhận).
b) ĐKXĐ: – 2 ≤ x ≤ 3. Bình phương hai vế thì được 3 - x = x + 3 + 2
⇔ -2x = 2.
Điều kiện x ≤ 0. Bình phương tiếp ta được:
x2 = x + 2 => x1 = -1 (nhận); x2 = 2 (loại).
Kết luận: Tập nghiệm S {-1}.
c) ĐKXĐ: x ≥ -2.
=> 2x2 + 5 = (x + 2)2 => x2 - 4x + 1 = 0
=> x1 =2 – (nhận), x2 = 2 + (nhận).
d) ĐK: x ≥ .
=> 4x2 + 2x + 10 = (3x + 1)2 => x1 = (loại), x2 = 1 (nhận).
dk \(\hept{\begin{cases}x-5\ge0\\x+3\ge0\\2x+4\ge0\end{cases}< =>x\ge5}\)
pt <=> \(\sqrt{x-5}-1+\sqrt{x+3}-3=\sqrt{2x+4}-4< =>\)
\(\frac{x-6}{\sqrt{x-5}+1}+\frac{x-6}{\sqrt{x+3}+3}=\frac{2x-12}{\sqrt{2x+4}+4}< =>\)\(\text{}\frac{1}{\sqrt{x-5}+1}+\frac{1}{\sqrt{x+3}+3}=\frac{2}{\sqrt{2x+4}+4}\) (1) hoặc x=6
đặt \(\sqrt{x-5}+1=a\left(a\ge1\right);\sqrt{x+3}+3=b\left(b\ge3\right)=>\sqrt{2x+4}+4=a+b\)
(1) <=> \(\frac{1}{a}+\frac{1}{b}=\frac{2}{a+b}< =>\frac{a+b}{ab}=\frac{2}{a+b}< =>\left(a+b\right)^2=2ab< =>a^2+b^2=0\)(vô lí vì a;b >0)
Vậy x=6 là nghiệm duy nhất