K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NT
3
Các câu hỏi dưới đây có thể giống với câu hỏi trên
4 tháng 10 2016
Mình hướng dẫn nhé :)
- Phương trình \(\sqrt{x-2\sqrt{x}+1}=\sqrt{x}-1\Leftrightarrow\sqrt{\left(\sqrt{x}-1\right)^2}=\sqrt{x}-1\Leftrightarrow\left|\sqrt{x}-1\right|=\sqrt{x}-1\)
Xét trường hợp để tìm nghiệm nhé :)
- \(\sqrt{4x^2-4x+1}=1-2x\Leftrightarrow\sqrt{\left(2x-1\right)^2}=1-2x\Leftrightarrow\left|2x-1\right|=1-2x\)
- \(\sqrt{x+2\sqrt{x-1}}=3\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=3\Leftrightarrow\left|\sqrt{x-1}+1\right|=3\) (mình sửa lại đề)
- \(\sqrt{x^2-4}=\sqrt{x^2-2x}\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}=\sqrt{x\left(x-2\right)}\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-\sqrt{x}\right)=0\)
- \(\sqrt{x^2+5}=x+1\). Tìm điều kiện xác định rồi bình phương hai vế.
VT
15 tháng 7 2018
a) Ta có pt \(\Leftrightarrow\sqrt{\left(x-3\right)^2}=\sqrt{\left(\sqrt{3}+1\right)^2}\Leftrightarrow\left|x-3\right|=\sqrt{3}+1...\)
b) Ta có pt \(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}=1\Leftrightarrow\left|x-1\right|+\left|x+2\right|=1\)
đến đây tự phá dấu trị tuyệt đối !
^_^
HT
25 tháng 6 2018
a, \(\left(\sqrt{x-1}-2\right)^2+\)\(\left(\sqrt{x-1}-3\right)^2\)
xog xét 2 TH
b, bình phương
2
GTLN : 2 dấu = xra \(2\le x\le4\)
đk: \(x\ge1\)
\(pt\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(1-\sqrt{x^3+x^2+x+1}\right)\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}-1=0\\1-\sqrt{x^3+x^2+x+1}=0\end{cases}\Leftrightarrow x=2}\)
pt \(\Rightarrow\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{\left(x-1\right)\left(x^3+x^2+x+1\right)}\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}=1\\\sqrt{x^3+x^2+x+1}=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x-1=1\\x^3+x^2+x+1=1\end{cases}\Leftrightarrow x-1=1\Leftrightarrow}x=2}\)