\(\sqrt{4x^2-3x+15}-3x+1=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2022

\(4x^2-3x+15\) có \(\Delta< 0;a=4>0\Rightarrow4x^2-3x+15>0\forall x\)

\(PT\Leftrightarrow\sqrt{4x^2-3x+15}=3x-1\Rightarrow x>\dfrac{1}{3}\)

BP 2 vế

\(\Leftrightarrow4x^2-3x+15=9x^2-6x+1\)

\(\Leftrightarrow5x^2-3x-14=0\)

\(\Rightarrow x_1=-\dfrac{7}{5}< \dfrac{1}{3}\) (loại); \(x_2=2>\dfrac{1}{3}\) (chọn)

NV
14 tháng 7 2022

\(\Leftrightarrow\sqrt{4x^2-3x+15}=3x-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-1\ge0\\4x^2-3x+15=\left(3x-1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\4x^2-3x+15=9x^2-6x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\5x^2-3x-14=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\\left[{}\begin{matrix}x=2\\x=-\dfrac{7}{5}\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow x=2\)

31 tháng 8 2019

ĐK: \(x\ge\frac{1}{3}\)

Đặt: \(\sqrt{3x-1}=t\left(t\ge0\right)\)

Ta có pt: \(x^2-x-t^2+t=0\)

<=> \(\left(x^2-t^2\right)-\left(x-t\right)=0\)

<=> \(\left(x-t\right)\left(x+t-1\right)=0\)

<=> \(\Leftrightarrow\orbr{\begin{cases}t=x\\t=1-x\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{3x-1}=x\\\sqrt{3x-1}=1-x\end{cases}}\)

Em làm tiếp nhé!

23 tháng 7 2019

a) \(x+\sqrt{4x^2-4x+1}=2\)

\(\Leftrightarrow x+\sqrt{\left(2x-1\right)^2}=2\)

\(\Leftrightarrow x+|2x-1|=2\)

\(TH1:x\ge0\)

\(\Leftrightarrow x+2x-1=2\)

\(\Leftrightarrow3x-1=2\)

\(\Leftrightarrow3x=3\)

\(\Leftrightarrow x=1\left(TM\right)\)

\(TH2:x< 0\)

\(\Leftrightarrow x-2x-1=2\)

\(\Leftrightarrow-x-1=2\)

\(\Leftrightarrow-x=3\)

\(\Leftrightarrow x=-3\left(TM\right)\)

Vậy:...

b) \(3x-1-\sqrt{4x^2-12x+9}=0\)

\(\Leftrightarrow3x-1-\sqrt{\left(2x-3\right)^2}=0\)

\(\Leftrightarrow3x-1-|2x-3|=0\)

\(TH1:x\ge0\)

\(\Leftrightarrow3x-1-2x+3=0\)

\(\Leftrightarrow x+2=0\Leftrightarrow x=-2\left(KTM\right)\)

\(TH2:x< 0\)

\(\Leftrightarrow3x-1+2x-3=0\)

\(\Leftrightarrow5x-4=0\Leftrightarrow x=\frac{4}{5}\left(KTM\right)\)

Vậy: pt vô nghiệm

Học Tốt!!!

13 tháng 10 2019

a,đk -1<x<7

x+1+2 căn 7-x-2 căn x+1=căn (x+1)(7-x)

18 tháng 10 2020

a) ĐK : \(x\ge1\)

pt <=> \(\sqrt{3^2\left(x-1\right)}-\frac{1}{2}\sqrt{2^2\left(x-1\right)}=2\)

<=> \(\left|3\right|\sqrt{x-1}-\frac{1}{2}\cdot\left|2\right|\sqrt{x-1}=2\)

<=> \(3\sqrt{x-1}-1\sqrt{x-1}=2\)

<=> \(2\sqrt{x-1}=2\)

<=> \(\sqrt{x-1}=1\)

<=> \(x-1=1\)=> \(x=2\)( tm )

b) \(3x-\sqrt{49-14x+x^2}=15\)

<=> \(\sqrt{x^2-14x+49}=3x-15\)

<=> \(\sqrt{\left(x-7\right)^2}=3x-15\)

<=> \(\left|x-7\right|=3x-15\)(1)

Với x < 7

(1) <=> 7 - x = 3x - 15

     <=> -x - 3x = -15 - 7

     <=> -4x = -22

     <=> x = 11/2 ( tm )

Với x ≥ 7

(1) <=> x - 7 = 3x - 15

      <=> x - 3x = -15 + 7

      <=> -2x = -8

      <=> x = 4 ( ktm )

Vậy x = 11/2

18 tháng 10 2020

a) \(ĐKXĐ:x\ge1\)

\(\sqrt{9x-9}-\frac{1}{2}\sqrt{4x-4}=2\)

\(\Leftrightarrow\sqrt{9.\left(x-1\right)}-\frac{1}{2}.\sqrt{4\left(x-1\right)}=2\)

\(\Leftrightarrow3\sqrt{x-1}-\frac{1}{2}.2\sqrt{x-1}=2\)

\(\Leftrightarrow3\sqrt{x-1}-\sqrt{x-1}=2\)

\(\Leftrightarrow2\sqrt{x-1}=2\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)\(\Leftrightarrow x=2\)( thỏa mãn ĐKXĐ )

Vậy phương trình có nghiệm là \(x=2\)

b) \(3x-\sqrt{49-14x+x^2}=15\)

\(\Leftrightarrow3x-\sqrt{\left(7-x\right)^2}=15\)

\(\Leftrightarrow3x-\left|7-x\right|=15\)

+) TH1: Nếu \(7-x< 0\)\(\Leftrightarrow x>7\)

thì \(3x-\left(x-7\right)=15\)

\(\Leftrightarrow3x-x+7=15\)\(\Leftrightarrow2x=8\)

\(\Leftrightarrow x=4\)( không thỏa mãn )

+) TH2: Nếu \(7-x\ge0\)\(\Leftrightarrow x\le7\)

thì \(3x-\left(7-x\right)=15\)

\(\Leftrightarrow3x-7+x=15\)

\(\Leftrightarrow4x=22\)\(\Leftrightarrow x=\frac{22}{4}\)( thỏa mãn ĐKXĐ )

Vậy nghiệm của phương trình là \(x=\frac{22}{4}\)

11 tháng 9 2020

a) \(x^3+1=2\sqrt[3]{2x-1}\) (1)

Đặt \(\sqrt[3]{2x-1}=a\Rightarrow a^3=2x-1\)

\(\Rightarrow1=2x-a^3\)

Phương trình (1) khi đó trở thành :

\(x^3+2x-a^3=2a\)

\(\Leftrightarrow\left(x^3-a^3\right)+2\left(x-a\right)=0\)

\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2+2\right)=0\)

\(\Leftrightarrow x=a\)

Do đó : \(x=\sqrt[3]{2x-1}\Leftrightarrow x^3-2x+1=0\)

\(\Leftrightarrow\left(x-1\right).\left(x^2-x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1\pm\sqrt{5}}{2}\end{cases}}\)

30 tháng 6 2017

a)Đk:\(x\ge\frac{1}{2}\)

\(pt\Leftrightarrow4x^2-12x+4+4\sqrt{2x-1}=0\)

\(\Leftrightarrow\left(2x-1\right)^2-4\left(2x-1\right)-1+4\sqrt{2x-1}=0\)

Đặt \(t=\sqrt{2x-1}>0\Rightarrow\hept{\begin{cases}t^2=2x-1\\t^4=\left(2x-1\right)^2\end{cases}}\)

\(t^4-4t^2+4t-1=0\)

\(\Leftrightarrow\left(t-1\right)^2\left(t^2+2t-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}t-1=0\\t^2+2t-1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}t=1\\t=\sqrt{2}-1\end{cases}\left(t>0\right)}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=2-\sqrt{2}\end{cases}}\) là nghiệm thỏa pt

4 tháng 6 2019

Bình phương cả 2 vế rồi đặt ẩn phụ là ra

5 tháng 6 2019

\(\sqrt{x^2+2x}+\sqrt{2x-1}=\sqrt{3x^2+4x+1}\)(ĐK:\(x>\frac{1}{2}\))

\(\Leftrightarrow x^2+2x+2x-1+2\sqrt{\left(x^2+2x\right)\left(2x-1\right)}=3x^2+4x+1\)(BP 2 vế)

\(\Leftrightarrow2\sqrt{2x^3-x^2+4x^2-2x}=2x^2+2\)

\(\Leftrightarrow\sqrt{2x^3+2x+3x^2+3-4x-3}=x^2+1\)

Đặt \(x^2+1=t\)

pt\(\Leftrightarrow\sqrt{2xt+3t-\left(4x+3\right)}=t\)

\(\Leftrightarrow2xt+3t-4x-3=t^2\)

\(\Leftrightarrow t^2-t\left(2x+3\right)+4x+3=0\)

\(\Delta=\left(2x+3\right)^2-4.\left(4x+3\right)=4x^2+12x+9-16x-12=4x^2-4x-3\)

\(\hept{\begin{cases}t_1=\frac{2x+3-\sqrt{4x^2-4x-3}}{2}\\t_2=\frac{2x+3+\sqrt{4x^2-4x-3}}{2}\end{cases}}\)

TH1:\(t=\frac{2x+3-\sqrt{4x^2-4x-3}}{2}\)

\(\Rightarrow2x^2+2=2x+3-\sqrt{4x^2-4x-3}\)

\(\Leftrightarrow2x^2+2=2x+3-\sqrt{4x^2+4x-8x-3}\)

\(\Leftrightarrow2t=2x+3-\sqrt{4t-8x-3}\)

Giải ra rồi thay TH2

20 tháng 2 2020

\(pt\Leftrightarrow3x\left(2+\sqrt{\left(3x\right)^2+3}\right)=-\left(2x+1\right)\)\(\left(2+\sqrt{\left(2x+1\right)^2+3}\right)\)

Nếu 3x = - (2x + 1)\(\Leftrightarrow x=-\frac{1}{5}\)thì các biểu thức trong căn của hai vế bằng nhau.Vậy \(x=-\frac{1}{5}\)là 1 nghiệm của phương trình.

Hơn nữa, nghiệm của pt nằm trong khoảng \(\left(\frac{-1}{2};0\right)\).Ta chứng minh đó là nghiệm duy nhất.

Với \(-\frac{1}{2}< x< -\frac{1}{5}:3x< -2x-1< 0\)

\(\Rightarrow\left(3x\right)^2>\left(2x+1\right)^2\)\(\Rightarrow2+\sqrt{\left(3x\right)^2+3}>2+\sqrt{\left(2x+1\right)^2+3}\)

Suy ra \(3x\left(2+\sqrt{\left(3x\right)^2+3}\right)+\left(2x+1\right)\)\(\left(2+\sqrt{\left(2x+1\right)^2+3}\right)>0\)pt không có nghiệm nằm trong khoảng này.CMTT: ta cũng đi đến kết luận pt không có nghiệm khi \(-\frac{1}{2}< x< -\frac{1}{5}\)

Vậy nghiệm duy nhất của phương trình là \(\frac{-1}{5}\)

11 tháng 5 2020

PT tương đương 

\(\left(2x+1\right)\left(2+\sqrt{\left(2x+1\right)^2+3}\right)=-3x\left(2+\sqrt{\left(-3x\right)^2+3}\right)\)

\(\Leftrightarrow f\left(2x+1\right)=f\left(-3x\right)\)

Trong đó \(f\left(t\right)=t\left(2+\sqrt{t^2+3}\right)\)là hàm đồng biến và liên tục trong R. Phương trình trở thành

\(f\left(2x+1\right)=f\left(-3x\right)\Leftrightarrow2x+1=-3x\Leftrightarrow x=\frac{-1}{5}\)là nghiệm duy nhất