\(\sqrt[3]{x^4-x^2}=-x^2+10x+1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2019

Thấy x khác 0 , x bằng 0 không phải là nghiệm của phương trình.

\(\sqrt[3]{x^4-x^2}=-x^2+10x+1\Leftrightarrow\sqrt[3]{x^3\left(x-\frac{1}{x}\right)}=-x\left(x-\frac{1}{x}-10\right)...\)     

\(\Leftrightarrow x.\sqrt[3]{x-\frac{1}{x}}=-x\left(x-\frac{1}{x}-10\right)\Leftrightarrow\sqrt[3]{x-\frac{1}{x}}=-\left(x-\frac{1}{x}-10\right).\) (Vì x khác 0),  x bằng không không phải là nghiệm cuae phương trình. Đặt ẩn phụ, được phương trình t3 + t - 10 = 0  với t là "căn bậc ba của x trừ một trên x" 

\(t^3+t-10=0\Leftrightarrow\left(t-2\right)\left(t^2+2t+5\right)=0.\) \(\Leftrightarrow\left(t-2\right)[\left(t+1\right)^2+4]=0\Leftrightarrow t=2.\)

Vậy  \(\sqrt[3]{x-\frac{1}{x}}=2\Leftrightarrow x-\frac{1}{x}=8\Leftrightarrow x^2-8x-1=0.\) Phương trình có hai nghiệm : \(x_1=4-\sqrt{17}.,x_2=4+\sqrt{17}.\)

6 tháng 7 2019

câu a

Học tại nhà - Toán - Bài 110035

6 tháng 7 2019

b,  ĐK \(x\ge-4\)

PT 

<=> \(\left(x-\sqrt{x+4}\right)+\left(\sqrt{2x^2-10x+17}-2x+3\right)=0\)

<=> \(\frac{x^2-x-4}{x+\sqrt{x+4}}+\frac{-2x^2+2x+8}{\sqrt{2x^2-10x+17}+2x-3}=0\)với \(x+\sqrt{x+4}\ne0\)

<=> \(\frac{x^2-x-4}{x+\sqrt{x+4}}-\frac{2\left(x^2-x-4\right)}{\sqrt{2x^2-10x+17}+2x-3}=0\)

<=> \(\orbr{\begin{cases}x^2-x-4=0\\\frac{1}{x+\sqrt{x+4}}-\frac{2}{\sqrt{2x^2-10x+17}+2x-3}=0\left(2\right)\end{cases}}\)

Giải (2)

=> \(2x+2\sqrt{x+4}=2x-3+\sqrt{2x^2-10x+17}\)

<=> \(\sqrt{2x^2-10x+17}=2\sqrt{x+4}+3\)

<=> \(2x^2-10x+17=4\left(x+4\right)+9+12\sqrt{x+4}\)

<=> \(x^2-7x-4=6\sqrt{x+4}\)

<=> \(\left(x-6\right)^2+5x-40=6\sqrt{6\left(x-6\right)-5x+40}\)

Đặt x-6=a;\(\sqrt{6\left(x-6\right)-5x+40}=b\)

=> \(\hept{\begin{cases}a^2+5x-40=6b\\b^2+5x-40=6a\end{cases}}\)

=> \(a^2-b^2+6\left(a-b\right)=0\)

<=> \(\orbr{\begin{cases}a=b\\a+b+6=0\end{cases}}\)

+ a=b

=> \(x-6=\sqrt{x+4}\)

=> \(\hept{\begin{cases}x\ge6\\x^2-13x+32=0\end{cases}}\)=> \(x=\frac{13+\sqrt{41}}{2}\)

+ a+b+6=0

=> \(x+\sqrt{x+4}=0\)(loại)

Vậy \(S=\left\{\frac{13+\sqrt{41}}{2};\frac{1+\sqrt{17}}{2}\right\}\)

20 tháng 5 2017

Sorry nha , em ko bt làm đâu , em mới học lớp 5 thui

20 tháng 5 2017

sory nha ae cũng ko biết làm đâu... em mới lên lớp 6 thôi

6 tháng 7 2018

bài 1 :điều kiện\(4\le x\le6\) 

 ta có \(VT=\left(\sqrt{x-4}+\sqrt{6-x}\right)\le\sqrt{2\left(x-4+6-x\right)}=\sqrt{2\cdot2}=2\)

\(VP=x^2-10x+27=x^2-10x+25+2=\left(x-5\right)^2+2\ge2\)

\(\Rightarrow VT=VP=2\Leftrightarrow x=5\)(t/m)

bài 2 :điều kiện : \(2\le x\le4\)

ta có \(VT=\left(\sqrt{x-2}+\sqrt{4-x}\right)\le\sqrt{2\left(x-2+4-x\right)}=2\)

\(VP=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)

\(\Rightarrow VT=VP=2\Leftrightarrow x=3\)(t/m)

24 tháng 8 2017

Bài này ở đâu thế b. Cho mình cái đề gốc được không?

19 tháng 8 2016

d/ Điều kiện xác định : \(4\le x\le6\)

 Áp dụng bđt Bunhiacopxki vào vế trái của pt : 

\(\left(1.\sqrt{x-4}+1.\sqrt{6-x}\right)^2\le\left(1^2+1^2\right)\left(x-4+6-x\right)\)

\(\Leftrightarrow\left(1.\sqrt{x-4}+1.\sqrt{6-x}\right)^2\le4\Leftrightarrow\sqrt{x-4}+\sqrt{6-x}\le2\)

Xét vế phải : \(x^2-10x+27=\left(x^2-10x+25\right)+2=\left(x-5\right)^2+2\ge2\)

Suy ra pt tương đương với : \(\begin{cases}\sqrt{x-4}+\sqrt{6-x}=2\\x^2-10x+27=2\end{cases}\) \(\Leftrightarrow x=5\) (tmđk)

Vậy pt có nghiệm x = 5

19 tháng 8 2016

a/ ĐKXĐ : \(x\ge0\) 

\(\sqrt{x+4-4\sqrt{x}}+\sqrt{x+9-6\sqrt{x}}=1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}=1\)

\(\Leftrightarrow\left|\sqrt{x}-2\right|+\left|\sqrt{x}-3\right|=1\) (1)

Tới đây xét các trường hợp : 

1. Nếu \(x>9\) thì pt (1) \(\Leftrightarrow\sqrt{x}-2+\sqrt{x}-3=1\Leftrightarrow\sqrt{x}=6\Leftrightarrow x=9\) (ktm)

2. Nếu \(0\le x< 4\) thì pt (1) \(\Leftrightarrow2-\sqrt{x}+3-\sqrt{x}=1\Leftrightarrow2\sqrt{x}=4\Leftrightarrow x=4\) (ktm)

3. Nếu \(4\le x\le9\) thì pt (1) \(\Leftrightarrow\sqrt{x}-2+3-\sqrt{x}=1\Leftrightarrow1=1\left(tmđk\right)\)

Vậy kết luận : pt có vô số nghiệm nếu x thuộc khoảng \(4\le x\le9\) 

9 tháng 7 2019

\(\sqrt{25x^2-10x+1}=4x+9\)

\(\Leftrightarrow\sqrt{\left(5x-1\right)^2}=4x+9\)

\(\Leftrightarrow\left|5x-1\right|=4x+9\)

\(\Leftrightarrow\orbr{\begin{cases}5x-1=4x+9\\5x-1=-4x-9\end{cases}\Leftrightarrow\orbr{\begin{cases}x=10\\x=-\frac{8}{9}\end{cases}}}\)

Vậy ... 

9 tháng 7 2019

\(\sqrt{x^2+2x+1}=\sqrt{x+1}\)

\(\Leftrightarrow\sqrt{\left(x+1\right)^2}=\sqrt{x+1}\)

\(\Leftrightarrow\sqrt{\left(x+1\right)^2}-\sqrt{x+1}=0\)

\(\Leftrightarrow\sqrt{x+1}.\left(\sqrt{x+1}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}=0\\\sqrt{x+1}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}}\)

Vậy ...