\(\sqrt[3]{x+3}-\sqrt[3]{6-x}=1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2019

\(\sqrt[3]{x+3}-\sqrt[3]{6-x}=1\)

\(\Leftrightarrow\sqrt[3]{x+3}-2-\left(\sqrt[3]{6-x}-1\right)=0\)

\(\Leftrightarrow\frac{x+3-8}{\sqrt[3]{x+3}^2+4+2\sqrt[3]{x+3}}-\frac{6-x-1}{\sqrt[3]{6-x}^2+1+\sqrt[3]{6-x}}=0\)

\(\Leftrightarrow\frac{x-5}{\sqrt[3]{x+3}^2+4+2\sqrt[3]{x+3}}+\frac{x-5}{\sqrt[3]{6-x}^2+1+\sqrt[3]{6-x}}=0\)

\(\Leftrightarrow\left(x-5\right)\left(\frac{1}{\sqrt[3]{x+3}^2+4+2\sqrt[3]{x+3}}+\frac{1}{\sqrt[3]{6-x}^2+1+\sqrt[3]{6-x}}\right)=0\)

Dễ thấy :

\(\frac{1}{\sqrt[3]{x+3}^2+4+2\sqrt[3]{x+3}}+\frac{1}{\sqrt[3]{6-x}^2+1+\sqrt[3]{6-x}}>0\)

\(\Rightarrow x-5=0\Leftrightarrow x=5\) 

Chúc bạn học tốt !!!

26 tháng 7 2018

kuchiyose edo tensen 

26 tháng 7 2018

Thiên Đạo Pain bạn viết gì vậy ?????

7 tháng 7 2018

a)

\(\sqrt{1-x}\) xác định với \(x\le1,\sqrt{x-2}\) xác định với \(x\ge2\)

Không có giá trị nào của x nghiệm đúng phương trình.

Do đó phương trình vô nghiệm.

7 tháng 7 2018

b) ĐKXĐ \(x\le3\)

\(\sqrt{3-x}+x=\sqrt{3-x}+1\)<=> x = 1.

Tậm nghiệm S = {1}

2 tháng 1 2020

Theo bài , ta có : \(\sqrt[3]{x+1}+\sqrt[3]{x-1}=\sqrt[3]{5x}\left(1\right)\)

Lập phương 2 vế lên ta được :

\(2x+3\sqrt[3]{x^2-1}\left(\sqrt[3]{x+1}+\sqrt[3]{x-1}\right)=5x\left(2\right)\)

Thay ( 1 ) vào ( 2 ) ta có :

\(\sqrt[3]{x^2-1}.\sqrt[3]{5x}=x\)

\(\Rightarrow4x^3-5x=0\)

\(\Rightarrow x=0;x=\pm\frac{\sqrt{5}}{2}\)

2 tháng 7 2015

+) thay x = -1 vào phương trình ta được: \(\sqrt[3]{-2}=\sqrt[3]{-2}\) => x = -1 là nghiệm của phương trình

+) x > - 1 => \(\sqrt[3]{x+1}>0\)

Ta có 3x + 1 > x - 1 => \(\sqrt[3]{3x+1}>\sqrt[3]{x-1}\)

=> \(\sqrt[3]{x+1}+\sqrt[3]{3x+1}>0+\sqrt[3]{x-1}=\sqrt[3]{x-1}\)

=> x > -1 không là nghiệm của pt

+) x < -1 => x+ 1 < 0 => \(\sqrt[3]{x+1}<0\)

x < - 1 => 2x < - 2 => 3x + 1 < x - 1 => \(\sqrt[3]{3x+1}<\sqrt[3]{x-1}\)

=>  \(\sqrt[3]{x+1}+\sqrt[3]{3x+1}<0+\sqrt[3]{x-1}=\sqrt[3]{x-1}\)

=> x < -1 không là nghiệm của pt đã cho

Vậy x = -1 là nghiệm duy nhất của phương trình

 

2 tháng 7 2015

Cho a3 = x+1

Vậy 3x + 3 = 3a3

=> 3x+3 - 2 = 3 x a3 - 2

=> 3x +1 = 3a3 - 2

=> a3 - 2 = x+1 - 2 = x-1

Phương trình tương đương: a3 + 3a3 - 2 = a3 -2

4a3 -2 = a-2

=> 3a3 = 0

=> a=0

 => x+1 = a3 = 0

3x +1 = 3a3 -2 = -2

x-1= a-2 = -2

=> x = -1

25 tháng 3 2019

a,\(\sqrt{x+3+4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=5\)

\(\Leftrightarrow\sqrt{x-1+4\sqrt{x-1+4}}+\sqrt{x-1-6\sqrt{x-1}+9}=5\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1+2}\right)^2}+\sqrt{\left(\sqrt{x-1-3}\right)^2}=5\)

\(\Leftrightarrow\sqrt{x-1}+2+|\sqrt{x-1}-3|=5\Leftrightarrow|\sqrt{x-1}-3|=3-\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{x-1}-3\le0\left(|A|=-A\Leftrightarrow A\le0\right)\)

\(\Leftrightarrow\sqrt{x-1}\le3\Leftrightarrow0\le x-1\le3^2\Leftrightarrow1\le x\le10\)

Nghiệm của phương trình đã cho là : \(1\le x\le10\)

25 tháng 3 2019

b, \(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)=4\)

\(\Leftrightarrow\left[\left(4x+1\right)\left(3x+2\right)\right]\left[\left(12x-1\right)\left(x+1\right)\right]=4\)

\(\Leftrightarrow\left(12x^2+8x+3x+2\right)\left(12x^2+12x-x-1\right)=4\)

\(\Leftrightarrow\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)=4\)

\(\Leftrightarrow\left(12x^2+11x+\frac{1}{2}+\frac{3}{2}\right)\left(12x^2+11x+\frac{1}{2}-\frac{3}{2}\right)=4\)

\(\Leftrightarrow\left(12x^2+11x+\frac{1}{2}\right)^2-\left(\frac{3}{2}\right)^2=4\Leftrightarrow\left(12x^2+11x+\frac{1}{2}\right)^2=4+\frac{9}{4}\)

\(\Leftrightarrow\left(12x^2+11x+\frac{1}{2}\right)^2=\left(\frac{5}{2}\right)^2\Leftrightarrow\orbr{\begin{cases}12x^2+11x+\frac{1}{2}=\frac{5}{2}\\12x^2+11x+\frac{1}{2}=-\frac{5}{2}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}12x^2+11x-2=0\left(1\right)\\12x^2+11x+3=0\left(2\right)\end{cases}}\)

Giải (1)          \(\Delta=121+96=217\)

                      \(x_1=\frac{-11+\sqrt{217}}{24};x_2=\frac{-11-\sqrt{217}}{24}\)

Giải (2)        \(\Delta=121-144=-23< 0\).Phương trình vô nghiệm.

Phương trình có 2 nghiệm phân biệt :

\(x_1=\frac{-11+\sqrt{217}}{24};x_2=\frac{-11-\sqrt{217}}{24}\)

a, \(\sqrt{x^2+2x-5}\)\(\sqrt{2x-1}\)( x \(\ge\frac{1}{2}\))

\(\Leftrightarrow x^2+2x-5=2x-1\)

\(\Leftrightarrow x^2=4\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-2\left(ktm\right)\end{cases}}\)

#mã mã#

b, \(\sqrt{x\left(x^3-3x+1\right)}\)\(=\sqrt{x\left(x^3-x\right)}\)\(\left(x\ge1\right)\)

\(\Leftrightarrow x\left(x^3-3x+1\right)\)\(x\left(x^3-1\right)\)

\(\Leftrightarrow\)x( x3 - 3x + 1 ) - x ( x3 - 1 ) = 0

\(\Leftrightarrow\)x ( x3 - 3x + 1 - x3 + 1 ) = 0

\(\Leftrightarrow\)x( 2-3x ) = 0

\(\Leftrightarrow\orbr{\begin{cases}x=0\\2-3x=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=\frac{2}{3}\left(ktm\right)\end{cases}}\)

vậy pt vô nghiệm

#mã mã#

2 tháng 8 2016

ĐKXĐ x\(\ge\) 1

\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6.\sqrt{x-1}}=1\)

<=>\(\sqrt{x-1-4.\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=1\)

<=>\(\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)

<=>\(\sqrt{x-1}-2+\sqrt{x-1}-3=1\)

<=>\(2\sqrt{x-1}-5=1\) <=>\(2\sqrt{x-1}=6\) 

<=>\(\sqrt{x-1}=3\Leftrightarrow x-1=9\Leftrightarrow x=10\)

2 tháng 8 2016

mik chỉ cho kết quả thoy nhaq chứ mik ko bik giải đâu

7,326731287