K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2016

đặt S=vế trái

ta có:S=\(\sqrt{3\left(x^2-6x+9\right)+1}+\sqrt{4\left(x^2-6x+9\right)+9}\)

S=\(\sqrt{3\left(x-3\right)^2+1}+\sqrt{4\left(x-3\right)^2+9}\)

ta thấy:\(\sqrt{3\left(x-3\right)^2+1}\ge\sqrt{1}=1\);\(\sqrt{4\left(x-3\right)^2+9}\ge\sqrt{9}=3\)

→S\(\ge\)4; xét vế phải :\(-5-x^2+6x=4-\left(x-3\right)^2\)\(\le\)4

vậy pt xảy ra khi x-3=0↔x=3

(đề là -5 -x2+6x thì khả nghi hơn)

5 tháng 7 2016

a) \(\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}=-x^2+6x-5\) (ĐKXĐ : \(1\le x\le5\) )\

Ta có : \(\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}=\sqrt{3\left(x^2-6x+9\right)+1}+\sqrt{4\left(x^2-6x+9\right)+9}=\sqrt{3\left(x-3\right)^2+1}+\sqrt{4\left(x-3\right)^2+9}\)

\(\Rightarrow\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}\ge1+3=4\)

Lại có : \(-x^2+6x-5=-\left(x^2-6x+9\right)+4=-\left(x-3\right)^2+4\le4\)

Do đó, phương trình tương đương với : \(\begin{cases}1\le x\le5\\\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}=4\\-x^2+6x-5=4\end{cases}\)\(\Rightarrow x=3\left(TM\right)\)

Vậy nghiệm của phương trình là x = 3

b) \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}=3+\sqrt{5}\)

Mặt khác, ta có : \(\begin{cases}\sqrt{\left(x-2\right)^2+1}\ge1\\\sqrt{\left(x-2\right)^2+4}\ge2\\\sqrt{\left(x-2\right)^2+5}\ge\sqrt{5}\end{cases}\)\(\Rightarrow\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}\ge3+\sqrt{5}\)

Dấu đẳng thức xảy ra <=> x = 2.

Vậy nghiệm của phương trình :  x = 2

 

11 tháng 5 2017

Viết nốt đi bạn ơi!! 

24 tháng 11 2019

Viết tiếp đi.Không có kết quả là bao nhiêu thì làm sao giải được???

17 tháng 7 2015

b/

\(pt\Leftrightarrow\left(x-1-2\sqrt{x-1}+1\right)+\left(y-2-4\sqrt{y-2}+4\right)+\left(z-3-6\sqrt{z-3}+9\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

\(\Leftrightarrow\sqrt{x-1}=1;\text{ }\sqrt{y-2}=2;\text{ }\sqrt{z-3}=3\)

\(\Leftrightarrow x=2;\text{ }y=6;\text{ }z=12\)

25 tháng 8 2019

Mình fix luôn đề nhé.

Ta có :

+) \(\sqrt{3x^2-18x+28}=\sqrt{3\left(x^2-6x+9\right)+1}\)

\(=\sqrt{3\left(x-3\right)^2+1}\ge1\forall x\)

+) \(\sqrt{4x^2-24x+45}=\sqrt{4\left(x^2-6x+9\right)+9}\)

\(=\sqrt{3\left(x-3\right)^2+9}\ge\sqrt{9}=3\forall x\)

Do đó \(VT\ge4\forall x\)

Xét \(VP=-5-x^2+6x\)

\(=-\left(x^2-6x+5\right)\)

\(=-\left(x^2-6x+9-4\right)\)

\(=4-\left(x-3\right)^2\le4\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy pt có nghiệm duy nhất \(x=3\).

25 tháng 8 2019

\(\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}=-5-x^2+6x\)

<=> \(\sqrt{3\left(x^2-6x+9\right)+1}+\sqrt{4\left(x^2-6x+9\right)+9}=4-\left(x^2-6x+9\right)\)

<=> \(\sqrt{3\left(x-3\right)^2+1}+\sqrt{4\left(x-3\right)^2+9}=4-\left(x-3\right)^2\)

\(\sqrt{3\left(x-3\right)^2+1}\ge\sqrt{0+1}=1\)

\(\sqrt{4\left(x-3\right)^2+9}\ge\sqrt{0+9}=3\)

=> VT=\(\sqrt{3\left(x-3\right)^2+1}+\sqrt{4\left(x-3\right)^2+9}\ge1+3=4\)

VP=\(4-\left(x-3\right)^2\le4\) với mọi x

=> Để VT=VP <=> \(x-3=0\) <=>x=3(t/m)

Vậy pt có nghiệm x=3

6 tháng 9 2015

Ta có : \(\sqrt{3x^2-18x+28}=\sqrt{3\left(x^2-6x+9\right)-27+28}=\sqrt{3\left(x-3\right)^2+1}\ge1\)

\(\sqrt{4x^2-24x+45}=\sqrt{4\left(x^2-6x+9\right)-36+45}=\sqrt{4\left(x-3\right)^2+9}\ge\sqrt{9}=3\)

=> VT >= 1 + 3 = 4 

VP = \(6x-x^2-5=-\left(x^2-6x+9\right)+9-5=-\left(x-3\right)^2+4\le4\)

Vậy VT = VP = 4 

Dấu = xảy ra khi x = 3 

Vậy x = 3 là n* của pt