Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x}-2\right|+\left|3-\sqrt{x}\right|=1\)
+ Ta có : \(\left|\sqrt{x}-2\right|+\left|3-\sqrt{x}\right|\ge\left|\sqrt{x}-2+3-\sqrt{x}\right|=1\)
Dấu "=" \(\Leftrightarrow\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)\ge0\)
\(\Leftrightarrow2\le\sqrt{x}\le3\Leftrightarrow4\le x\le9\)
2. + \(ĐK:4-2x-x^2\ge0\)
+ VT = \(\sqrt{3\left(x^2+2x+1\right)+4}+\sqrt{5\left(x^2+2x+1\right)+9}\)
\(=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\) \(\ge\sqrt{4}+\sqrt{9}=5\) (1)
Dấu "=" \(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)
+ VP \(=-\left(x^2+2x+1\right)+5=-\left(x+1\right)^2+5\le5\forall x\) (2)
Dấu "=" \(\Leftrightarrow x=-1\)
+ Từ (1) và (2) suy ra : pt \(\Leftrightarrow VT=VP=5\Leftrightarrow x=-1\) (TM)
3. + TH1: \(x< 0\) ta có :
\(VT< \sqrt[3]{2.0+1}+\sqrt[3]{0}=1\) ( KTM )
+ TH2 : x = 0 ta có :
\(VT=\sqrt[3]{1}+\sqrt[3]{0}=1\) ( TM )
+ TH3 : x > 0 ta có :
\(VT>\sqrt[3]{2.0+1}+\sqrt[3]{0}=1\) ( KTM )
Vậy x = 0 là nghiệm duy nhất của pt
4. \(\Leftrightarrow\left(x-1\right)\left(x+4\right)\left(x-2\right)\left(x+3\right)-24=0\)
\(\Leftrightarrow\left(x^2+2x-3\right)\left(x^2+2x-8\right)-24=0\)
\(\Leftrightarrow t\left(t-5\right)-24=0\) ( với \(t=x^2+2x-3\) )
\(\Leftrightarrow t^2-5t-24=0\Leftrightarrow\left(t+3\right)\left(t-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-3\\t=8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+2x-3=-3\\x^2+2x-3=8\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\left(x+2\right)=0\\\left(x+1\right)^2=12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=2\sqrt{3}-1\\x=-2\sqrt{3}-1\end{matrix}\right.\) ( TM )
Lời giải:
PT \(\Leftrightarrow \sqrt{2(x^4+4+4x^2-4x^2)}=3x^2-10x+6\)
\(\Leftrightarrow \sqrt{2[(x^2+2)^2-(2x)^2]}=3x^2-10x+6\)
\(\Leftrightarrow \sqrt{2(x^2+2-2x)(x^2+2+2x)}=3x^2-10x+6\)
Đặt \(\sqrt{2(x^2+2-2x)}=a; \sqrt{x^2+2+2x}=b(a,b\geq 0)\). Khi đó pt đã cho trở thành:
\(ab=2a^2-b^2\)
\(\Leftrightarrow 2a^2-ab-b^2=0\)
\(\Leftrightarrow (a-b)(2a+b)=0\Rightarrow \left[\begin{matrix} a-b=0\\ 2a+b=0\end{matrix}\right.\)
Nếu \(a-b=0\Leftrightarrow a=b\Rightarrow a^2=b^2\)
\(\Leftrightarrow 2x^2-4x+4=x^2+2+2x\)
\(\Leftrightarrow x^2-6x+2=0\Rightarrow x=3\pm \sqrt{7}\) (đều thỏa mãn)
Nếu \(2a+b=0\). Vì $a,b\geq 0$ nên điều này xảy ra khi $a=b=0$
\(\Leftrightarrow \sqrt{2x^2-4x+4}=\sqrt{x^2+2x+2}=0\) (không tìm được $x$ thỏa mãn)
Vậy........
a/ ĐK: \(3x^2-10x+6\ge0\)
Nhận thấy \(x=0\) không phải nghiệm
\(\Leftrightarrow2\left(x^2+4\right)=\left(3x^2-10x+6\right)^2\)
\(\Leftrightarrow2\left(x^2+\frac{4}{x^2}\right)=\left(3x-10+\frac{6}{x}\right)^2=\left(3\left(x+\frac{2}{x}\right)-10\right)^2\)
Đặt \(x+\frac{2}{x}=a\Rightarrow x^2+\frac{4}{x^2}=a^2-4\)
\(\Leftrightarrow2\left(a^2-4\right)=\left(3a-10\right)^2\)
\(\Leftrightarrow7a^2-60a+108=0\Rightarrow\left[{}\begin{matrix}a=6\\a=\frac{18}{7}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{2}{x}=6\\x+\frac{2}{x}=\frac{18}{7}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-6x+2=0\\7x^2-18x+14=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3+\sqrt{7}\\x=3-\sqrt{7}\end{matrix}\right.\)
b/ \(x\ge-\frac{1}{4}\)
Đặt \(\sqrt{x+\frac{1}{4}}=a\ge0\Rightarrow x=a^2-\frac{1}{4}\)
\(\Leftrightarrow a^2-\frac{1}{4}+\sqrt{a^2-\frac{1}{4}+\frac{1}{2}+a}=2\)
\(\Leftrightarrow a^2-\frac{1}{4}+\sqrt{\frac{1}{4}\left(4a^2+4a+1\right)}=2\)
\(\Leftrightarrow a^2-\frac{1}{4}+\frac{1}{2}\left(2a+1\right)=2\)
\(\Leftrightarrow4a^2+4a-7=0\) \(\Rightarrow\left[{}\begin{matrix}a=\frac{-1+2\sqrt{2}}{2}\\a=\frac{-1-2\sqrt{2}}{2}< 0\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x+\frac{1}{4}}=\frac{-1+2\sqrt{2}}{2}\Rightarrow x=2-\sqrt{2}\)
Tham khảo lời giải tải đây nha : http://123link.vip/TJMUnni
\(\sqrt{2\left(x^4+4\right)}=3x^2-10x+6\)
\(\Leftrightarrow\sqrt{2\left(x^2-2x+2\right)\left(x^2+2x+2\right)}=3x^2-10x+6\)
Đặt \(x^2-2x+2=a\)
\(\Leftrightarrow\sqrt{2a\left(a+4x\right)}=3a-4x\)
\(\Leftrightarrow2a\left(a+4x\right)=\left(3a-4x\right)^2\)
\(\Leftrightarrow\left(7a-4x\right)\left(4x-a\right)=0\)