Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)
Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)
2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)
\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)
\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)
\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)
Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)
\(\Rightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\left(tm\right)\)
Vậy pt có no x=2
\(\sqrt{x-3+2\sqrt{x-4}}=2\sqrt{x-4}-1\left(đkxđ:x\ge4\right)\)
Đặt \(x-3\)là \(u\)thì phương trình đã cho tương đương :
\(\sqrt{u+2\sqrt{u-1}}=2\sqrt{u-1}-1\)\(\left(u\ge1\right)\)
\(< =>u+2\sqrt{u-1}=2\left(u-1\right)-4\sqrt{u-1}+1\)
\(< =>u-1+6\sqrt{u-1}-2\left(u-1\right)=0\)
\(< =>6\sqrt{u-1}-\left(u-1\right)=0\)
Đặt \(\sqrt{u-1}\)là \(v\)thì phương trình tương đương :
\(6v-v^2=0\left(v\ge0\right)\)
\(< =>\orbr{\begin{cases}v=0\\v=6\end{cases}}\)
Với \(v=0< =>\sqrt{u-1}=0\)
\(< =>u=1< =>x-3=0< =>x=3\left(tm\right)\)
Với \(v=6< =>\sqrt{u-1}=6\)
\(< =>u=37< =>x-3=37< =>x=40\left(tm\right)\)
Vậy tập nghiệm của phương trình trên là {3;40}
sửa lại cho mình là 3 ( ktm )
Cái kết luận sửa lại là 40 thôi nhé
ĐKXĐ:....
\(\sqrt{4-\sqrt{1-x}}=\sqrt{2-x}\)
\(\Rightarrow4-\sqrt{1-x}=2-x\)
\(\Rightarrow\sqrt{1-x}=2+x\)
\(\Rightarrow1-x=4+4x+x^2\)
\(\Rightarrow1-x-4-4-x^2=0\)
\(\Rightarrow x^2+x+7=0\)
Đến đây dễ rồi làm nốt nha bạn !
ĐKXĐ:....
\sqrt{4-\sqrt{1-x}}=\sqrt{2-x}4−1−x=2−x
\Rightarrow4-\sqrt{1-x}=2-x⇒4−1−x=2−x
\Rightarrow\sqrt{1-x}=2+x⇒1−x=2+x
\Rightarrow1-x=4+4x+x^2⇒1−x=4+4x+x2
\Rightarrow1-x-4-4-x^2=0⇒1−x−4−4−x2=0
\Rightarrow x^2+x+7=0⇒x2+x+7=0
Đến đây dễ rồi làm nốt nha bạn !
\(\sqrt{1-x}+\sqrt{x+4}=3\)
\(\Leftrightarrow5+2\sqrt{\left(1-x\right)\left(x+4\right)}=9\)
\(\Leftrightarrow2\sqrt{\left(1-x\right)\left(x+4\right)}=9-5\)
\(\Leftrightarrow2\sqrt{\left(1-x\right)\left(x+4\right)}=4\)
Bình phương hai vế lên, ta có: (tự làm tiếp, đến đây là dễ rồi)